1 resultado para Synthetic antioxidants
em Digital Peer Publishing
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (15)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Aquatic Commons (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (18)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (48)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (19)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (17)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (57)
- Boston University Digital Common (2)
- Brock University, Canada (6)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (12)
- Cambridge University Engineering Department Publications Database (24)
- CentAUR: Central Archive University of Reading - UK (53)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (38)
- Cochin University of Science & Technology (CUSAT), India (17)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Archives@Colby (2)
- Digital Commons - Michigan Tech (5)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (2)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (10)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (11)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (7)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (101)
- Instituto Gulbenkian de Ciência (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (33)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (6)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (93)
- Queensland University of Technology - ePrints Archive (62)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (116)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (3)
- Universidad Politécnica de Madrid (8)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (2)
- University of Connecticut - USA (1)
- University of Michigan (45)
- University of Queensland eSpace - Australia (50)
- University of Washington (1)
Resumo:
Imitation learning is a promising approach for generating life-like behaviors of virtual humans and humanoid robots. So far, however, imitation learning has been mostly restricted to single agent settings where observed motions are adapted to new environment conditions but not to the dynamic behavior of interaction partners. In this paper, we introduce a new imitation learning approach that is based on the simultaneous motion capture of two human interaction partners. From the observed interactions, low-dimensional motion models are extracted and a mapping between these motion models is learned. This interaction model allows the real-time generation of agent behaviors that are responsive to the body movements of an interaction partner. The interaction model can be applied both to the animation of virtual characters as well as to the behavior generation for humanoid robots.