1 resultado para Support Vector Machines and Naive Bayes Classifier
em Digital Peer Publishing
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (10)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- Applied Math and Science Education Repository - Washington - USA (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (3)
- Aston University Research Archive (27)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (41)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (23)
- Brock University, Canada (9)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CentAUR: Central Archive University of Reading - UK (40)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (4)
- Cochin University of Science & Technology (CUSAT), India (18)
- Coffee Science - Universidade Federal de Lavras (3)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (27)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (4)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (18)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (6)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (40)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Harvard University (1)
- Institute of Public Health in Ireland, Ireland (8)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (2)
- Instituto Politécnico do Porto, Portugal (26)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (3)
- Massachusetts Institute of Technology (26)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (6)
- Nottingham eTheses (2)
- Open Access Repository of Indian Theses (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (14)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório Institucional da Universidade de Brasília (2)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (63)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (20)
- School of Medicine, Washington University, United States (1)
- Scielo España (1)
- Scielo Saúde Pública - SP (50)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (32)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (14)
- Universidade Federal de Uberlândia (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (14)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (118)
- Université de Montréal (1)
- Université de Montréal, Canada (13)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (5)
- University of Connecticut - USA (1)
- University of Michigan (21)
- University of Queensland eSpace - Australia (54)
- University of Southampton, United Kingdom (6)
- University of Washington (2)
Resumo:
Audio-visual documents obtained from German TV news are classified according to the IPTC topic categorization scheme. To this end usual text classification techniques are adapted to speech, video, and non-speech audio. For each of the three modalities word analogues are generated: sequences of syllables for speech, “video words” based on low level color features (color moments, color correlogram and color wavelet), and “audio words” based on low-level spectral features (spectral envelope and spectral flatness) for non-speech audio. Such audio and video words provide a means to represent the different modalities in a uniform way. The frequencies of the word analogues represent audio-visual documents: the standard bag-of-words approach. Support vector machines are used for supervised classification in a 1 vs. n setting. Classification based on speech outperforms all other single modalities. Combining speech with non-speech audio improves classification. Classification is further improved by supplementing speech and non-speech audio with video words. Optimal F-scores range between 62% and 94% corresponding to 50% - 84% above chance. The optimal combination of modalities depends on the category to be recognized. The construction of audio and video words from low-level features provide a good basis for the integration of speech, non-speech audio and video.