4 resultados para Strategic management. Performance evaluation. Strategic map. Balanced scorecard. Third sector
em Digital Peer Publishing
Resumo:
Im folgenden Beitrag werden zeitdiskrete analytische Methoden vorgestellt, mit Hilfe derer Informations- und Materialflüsse in logistischen Systemen analysiert und bewertet werden können. Bestehende zeitdiskrete Verfahren sind jedoch auf die Bearbeitung und Weitergabe in immer gleichen Mengen („One Piece Flow“) beschränkt. Vor allem in Materialflusssystemen kommt es, bedingt durch die Zusammenfassung von Aufträgen, durch Transporte und durch Sortiervorgänge, zur Bildung von Batches. Daher wurden analytische Methoden entwickelt, die es ermöglichen, verschiedene Sammelprozesse, Batchankünfte an Ressourcen, Batchbearbeitung und Sortieren von Batches analytisch abzubilden und Leistungskenngrößen zu deren Bewertung zu bestimmen. Die im Rahmen der Entwicklungsarbeiten entstandene Software-Lösung „Logistic Analyzer“ ermöglicht eine einfache Modellierung und Analyse von praktischen Problemen. Der Beitrag schließt mit einem numerischen Beispiel.
Resumo:
Das Management komplexer, interorganisatorischer und durch eine Vielzahl unterschiedlicher Beziehungen miteinander verknüpfter Strukturen und Prozesse, wie sie großen Netzen der Logistik zu-grunde liegen, stellt für die verantwortlichen Akteure eine anspruchsvolle Aufgabe dar. Der nachfolgende Beitrag stellt einen systematischen Ansatz vor, mit dem Netzwerkmanager bei der Erfüllung dieser Auf-gabe durch eine verbesserte Informationsgrundlage über verfügbare Methoden und Gestaltungsoptionen unterstützt werden sollen. Exemplarisch demonstriert wird die Funktionsweise dieses Ansatzes anhand des umfangreichen Instrumentariums des Netzwerk-Controlling, welches zur Schaffung von Transparenz in den unternehmensübergreifenden Prozessen zur Verfügung steht.
Resumo:
Person-to-stock order picking is highly flexible and requires minimal investment costs in comparison to automated picking solutions. For these reasons, tradi-tional picking is widespread in distribution and production logistics. Due to its typically large proportion of manual activities, picking causes the highest operative personnel costs of all intralogistics process. The required personnel capacity in picking varies short- and mid-term due to capacity requirement fluctuations. These dynamics are often balanced by employing minimal permanent staff and using seasonal help when needed. The resulting high personnel fluctuation necessitates the frequent training of new pickers, which, in combination with in-creasingly complex work contents, highlights the im-portance of learning processes in picking. In industrial settings, learning is often quantified based on diminishing processing time and cost requirements with increasing experience. The best-known industrial learning curve models include those from Wright, de Jong, Baloff and Crossman, which are typically applied to the learning effects of an entire work crew rather than of individuals. These models have been validated in largely static work environments with homogeneous work contents. Little is known of learning effects in picking systems. Here, work contents are heterogeneous and individual work strategies vary among employees. A mix of temporary and steady employees with varying degrees of experience necessitates the observation of individual learning curves. In this paper, the individual picking performance development of temporary employees is analyzed and compared to that of steady employees in the same working environment.