2 resultados para Spatio-temporal dynamics

em Digital Peer Publishing


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Almost all regions of the brain receive one or more neuromodulatory inputs, and disrupting these inputs produces deficits in neuronal function. Neuromodulators act through intracellular second messenger pathways to influence the electrical properties of neurons, integration of synaptic inputs, spatio-temporal firing dynamics of neuronal networks, and, ultimately, systems behavior. Second messengers pathways consist of series of bimolecular reactions, enzymatic reactions, and diffusion. Calcium is the second messenger molecule with the most effectors, and thus is highly regulated by buffers, pumps and intracellular stores. Computational modeling provides an innovative, yet practical method to evaluate the spatial extent, time course and interaction among second messenger pathways, and the interaction of second messengers with neuron electrical properties. These processes occur both in compartments where the number of molecules are large enough to describe reactions deterministically (e.g. cell body), and in compartments where the number of molecules is small enough that reactions occur stochastically (e.g. spines). – In this tutorial, I explain how to develop models of second messenger pathways and calcium dynamics. The first part of the tutorial explains the equations used to model bimolecular reactions, enzyme reactions, calcium release channels, calcium pumps and diffusion. The second part explains some of the GENESIS, Kinetikit and Chemesis objects that implement the appropriate equations. In depth explanation of calcium and second messenger models is provided by reviewing code, both in XPP, Chemesis and Kinetikit, that implements simple models of calcium dynamics and second messenger cascades.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Artificial neural networks are based on computational units that resemble basic information processing properties of biological neurons in an abstract and simplified manner. Generally, these formal neurons model an input-output behaviour as it is also often used to characterize biological neurons. The neuron is treated as a black box; spatial extension and temporal dynamics present in biological neurons are most often neglected. Even though artificial neurons are simplified, they can show a variety of input-output relations, depending on the transfer functions they apply. This unit on transfer functions provides an overview of different transfer functions and offers a simulation that visualizes the input-output behaviour of an artificial neuron depending on the specific combination of transfer functions.