2 resultados para Simulation Environments
em Digital Peer Publishing
Resumo:
In recent years interactive media and tools, like scientific simulations and simulation environments or dynamic data visualizations, became established methods in the neural and cognitive sciences. Hence, university teachers of neural and cognitive sciences are faced with the challenge to integrate these media into the neuroscientific curriculum. Especially simulations and dynamic visualizations offer great opportunities for teachers and learners, since they are both illustrative and explorable. However, simulations bear instructional problems: they are abstract, demand some computer skills and conceptual knowledge about what simulations intend to explain. By following two central questions this article provides an overview on possible approaches to be applied in neuroscience education and opens perspectives for their curricular integration: (i) How can complex scientific media be transformed for educational use in an efficient and (for students on all levels) comprehensible manner and (ii) by what technical infrastructure can this transformation be supported? Exemplified by educational simulations for the neurosciences and their application in courses, answers to these questions are proposed a) by introducing a specific educational simulation approach for the neurosciences b) by introducing an e-learning environment for simulations, and c) by providing examples of curricular integration on different levels which might help academic teachers to integrate newly created or existing interactive educational resources in their courses.
Resumo:
Dieser Beitrag stellt ein Vorgehen zur Entwicklung einer Methodik zur Generierung einer praxisnahen Datenbasis für numerische Untersuchungen im Rahmen der maritimen Leercontainerlogistik vor. Das Vorgehen wird an einem exemplarischen Anwendungsfall verdeutlicht. Die Resultate sollen Testläufe für Szenarien der Leercontainerlogistik unterstützen und somit eine Basis für die Entwicklung und Bewertung organisatorischer Verbesserungsansätze, mathematischer Optimierungsmodelle, entsprechender Lösungsalgorithmen und praxisnaher Simulationsumgebungen bilden.