1 resultado para Randalls Island (N.Y.)--Maps, Topographic.
em Digital Peer Publishing
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (27)
- Adam Mickiewicz University Repository (1)
- Aquatic Commons (15)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (5)
- Biblioteca Digital - Universidad Icesi - Colombia (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (20)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- Cambridge University Engineering Department Publications Database (3)
- CentAUR: Central Archive University of Reading - UK (6)
- Center for Jewish History Digital Collections (6)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (6)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (9)
- Digital Archives@Colby (1)
- Digital Commons - Montana Tech (2)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (1)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (1)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Harvard University (271)
- Helda - Digital Repository of University of Helsinki (1)
- Indian Institute of Science - Bangalore - Índia (2)
- Instituto Politécnico de Santarém (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Laboratório Nacional de Energia e Geologia - Portugal (1)
- Memoria Académica - FaHCE, UNLP - Argentina (49)
- Ministerio de Cultura, Spain (10)
- National Center for Biotechnology Information - NCBI (2)
- Portal de Revistas Científicas Complutenses - Espanha (9)
- Publishing Network for Geoscientific & Environmental Data (62)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (10)
- Queensland University of Technology - ePrints Archive (7)
- Repositorio Académico de la Universidad Nacional de Costa Rica (7)
- Repositório Científico da Universidade de Évora - Portugal (2)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (16)
- Repositorio Institucional Universidad de Medellín (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- South Carolina State Documents Depository (14)
- Universidad Autónoma de Nuevo León, Mexico (16)
- Universidad de Alicante (27)
- Universidad del Rosario, Colombia (23)
- Universidad Politécnica de Madrid (53)
- Universidad Politécnica Salesiana Ecuador (2)
- Universidade Complutense de Madrid (2)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (9)
- Université de Montréal, Canada (2)
- University of Michigan (54)
- University of Queensland eSpace - Australia (6)
- University of Washington (3)
- USA Library of Congress (96)
- WestminsterResearch - UK (1)
Resumo:
The biological function of neurons can often be understood only in the context of large, highly interconnected networks. These networks typically form two-dimensional topographic maps, such as the retinotopic maps in mammalian visual cortex. Computational simulations of these areas have led to valuable insights about how cortical topography develops and functions, but further progress has been hindered due to the lack of appropriate simulation tools. This paper introduces the freely available Topographica maplevel simulator, originally developed at the University of Texas at Austin and now maintained at the University of Edinburgh, UK. Topographica is designed to make large-scale, detailed models practical. The goal is to allow neuroscientists and computational scientists to work together to understand how topographic maps and their connections organize and operate. This understanding will be crucial for integrating experimental observations into a comprehensive theory of brain function.