3 resultados para Problem solutions

em Digital Peer Publishing


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In reverse logistics networks, products (e.g., bottles or containers) have to be transported from a depot to customer locations and, after use, from customer locations back to the depot. In order to operate economically beneficial, companies prefer a simultaneous delivery and pick-up service. The resulting Vehicle Routing Problem with Simultaneous Delivery and Pick-up (VRPSDP) is an operational problem, which has to be solved daily by many companies. We present two mixed-integer linear model formulations for the VRPSDP, namely a vehicle-flow and a commodity-flow model. In order to strengthen the models, domain-reducing preprocessing techniques, and effective cutting planes are outlined. Symmetric benchmark instances known from the literature as well as new asymmetric instances derived from real-world problems are solved to optimality using CPLEX 12.1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose two cooperation schemes to compose new parallel variants of the Variable Neighborhood Search (VNS). On the one hand, a coarse-grained cooperation scheme is introduced which is well suited for being enhanced with a solution warehouse to store and manage the so far best found solutions and a self-adapting mechanism for the most important search parameters. This makes an a priori parameter tuning obsolete. On the other hand, a fine-grained scheme was designed to reproduce the successful properties of the sequential VNS. In combination with the use of parallel exploration threads all of the best solutions and 11 out of 20 new best solutions for the Multi Depot Vehicle Routing Problem with Time Windows were found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In manual order picking systems, order pickers walk or drive through a distribution warehouse in order to collect items which are requested by (internal or external) customers. In order to perform these operations efficiently, it is usually required that customer orders are combined into (more substantial) picking orders of limited size. The Order Batching Problem considered in this paper deals with the question of how a given set of customer orders should be combined such that the total length of all tours is minimized which are necessary to collect all items. The authors introduce two metaheuristic approaches for the solution of this problem: the first one is based on Iterated Local Search; the second on Ant Colony Optimization. In a series of extensive numerical experiments, the newly developed approaches are benchmarked against classic solution methods. It is demonstrated that the proposed methods are not only superior to existing methods but provide solutions which may allow distribution warehouses to be operated significantly more efficiently.