10 resultados para Printing.
em Digital Peer Publishing
Resumo:
Objet Geometries Ltd entwickelt und produziert Rapid Prototyping Systeme und Materialien auf Basis der Polyjet-Technologie und bietet diese im internationalen Markt an. Objet ist der „Pionier“ in der Entwicklung der Polyjet-Technologie zur schnellen Erstellung von hochwertigen Modellen aus den 3D-Daten der Design- und CAx-Systeme. Die Oberflächenqualität, die schnelle Reinigung des Supportmaterials mit Hilfe eines Wasserstrahls, die Bauteilqualität hinsichtlich der Genauigkeit sowie die einfache Bedienung der Systeme zu einem hervorragenden Preis/Leistungsverhältnis zeichnen Objet als Marktführer dieser Technologie aus. Die Systeme von Objet sind insbesondere für den Anwender in Design und Engineering konzipiert und können in einer Büroumgebung betrieben werden. Die verwendeten Materialien sind für den Anwender ohne jegliche Gefahr einsetzbar und sind von einem deutschen Institut mit entsprechenden Zertifikaten dokumentiert. Die Produktlinie von Objet ermöglicht im Design und Engineering die Zeiten in der Produktentwicklung erheblich zu reduzieren. Kunden von Objet sind in Nordamerika, Europa, Asien und Australien zu finden, viele von ihnen sind bedeutende Unternehmen aus den Märkten Automobilindustrie, Elektronik/Elektrotechnik, Spielwaren, Medizin, Konsumerprodukte, Schuhindustrie, Schmuckindustrie und vielen anderen Branchen. Objet wurde 1998 gegründet und befindet sich im privaten Besitz. Das Unternehmen wird von Investoren wie der Scitex Corporation sowie von weiteren privaten Investoren, Unternehmer-Kapitalfonden and Kooperationen in USA, Japan, Europa und Israel unterstützt. Aus Wettbewerbsgründen werden Unternehmenszahlen derzeit nicht öffentlich zur Verfügung gestellt. Das Unternehmen beschäftigt zur Zeit weltweit ca. 75 Mitarbeiter und verfügt über eigene Vertriebs- und Servicecenter in den USA und Europa, sowie Vertriebspartnern in der ganzen Welt. Seit Mitte 2001 wurden über 170 Systeme weltweit vermarktet und installiert. Der Vortrag anlässlich der RapidTech wird diese noch recht „junge“ Technologie, deren Vorteile für den Anwender sowie die möglichen Applikationen an Hand von konkreten Beispielen im Detail erläutern.
Resumo:
Eine zunehmende Anzahl von Artikeln in Publikumszeitschriften und Journalen rückt die direkte Herstellung von Bauteilen und Figuren immer mehr in das Bewusstsein einer breiten Öffentlichkeit. Leider ergibt sich nur selten ein einigermaßen vollständiges Bild davon, wie und in welchen Lebensbereichen diese Techniken unseren Alltag verändern werden. Das liegt auch daran, dass die meisten Artikel sehr technisch geprägt sind und sich nur punktuell auf Beispiele stützen. Dieser Beitrag geht von den Bedürfnissen der Menschen aus, wie sie z.B. in der Maslow’schen Bedürfnispyramide strukturiert dargestellt sind und unterstreicht dadurch, dass 3D Printing (oder Additive Manufacturing resp. Rapid Prototyping) bereits alle Lebensbereiche erfasst hat und im Begriff ist, viele davon zu revolutionieren.
Resumo:
Generative Verfahren sind seit etwa 1987 in den USA und seit etwa 1990 in Europa und Deutschland in Form von Rapid Prototyping Verfahren bekannt und haben sich in dieser Zeit von eher als exotisch anzusehenden Modellbauverfahren zu effizienten Werkzeugen für die Beschleunigung der Produktentstehung gewandelt. Mit der Weiterentwicklung der Verfahren und insbesondere der Materialien wird mehr und mehr das Feld der direkten Anwendung der Rapid Technologie zur Fertigung erschlossen. Rapid Technologien werden daher zum Schlüssel für neue Konstruktionssystematiken und Fertigungsstrategien. Die Anwendertagung Rapid.Tech befasst sich mit den neuen Verfahren zur direkten Produktion und den daraus erwachsenden Chancen für Entwickler und Produzenten. Die Kenntnis der Rapid Prototyping Verfahren wird bei den meisten Fachvorträgen auf der Rapid.Tech vorausgesetzt. Für diejenigen, die sich bisher mit generativen Verfahren noch nicht beschäftigt haben, oder die ihre Grundkenntnisse schnell auffrischen wollen, haben wir die folgenden Zusammenfassung der Grundlagen der generativen Fertigungstechnik, der heutigen Rapid Prototyping Verfahren, zusammengestellt.
Resumo:
Um mit den immer kürzer werdenden Produkteinführungszeiten Schritt halten zu können, die der harte Wettbewerb heute vorgibt, setzt die produzierende Industrie mehr und mehr auf das 3D-Drucken von Prototypen. Mit dieser Produktionsmethode lassen sich technische Probleme schon in der frühen Entwicklungsphase lösen. Dies spart Kosten und beschleunigt die Entwicklungsschritte. Die innovative PolyJetTM-Technologie von Objet setzt neue Maßstäbe im 3D-Drucken. Die Besonderheit: Modelle aus hauchdünnen Materialschichten. So können mit der PolyJetTM-Technologie detailgetreue Modelle extrem schnell, einfach und sauber realisiert werden – und das mit hervorragender Oberflächenqualität
Resumo:
Rapid Manufacturing (RM) umfasst den Begriff der direkten und wirtschaftlichen Bauteilherstellung des Serienprodukts aus 3D-Daten. Die Hauptvorteile sind u.a. das Wegfallen von Werkzeugen und eine Designfreiheit in der Produktentwicklung, die noch vor wenigen Jahren undenkbar war. Wenngleich heute eine Vielzahl von Werkstoffen im Kunststoff- und Metallbereich einsetzbar sind, konzentriert sich die Verbreitung des RM allerdings auf besondere Technologie- und Wirtschaftszweige, aufgrund mangelnder Erfahrungswerte, teilweise abweichender Werkstoffeigenschaften, fehlender Standards und ungeeigneter Testmethoden. In der Praxis sind Ingenieure und Techniker stark darauf bedacht, auf etablierte Abläufe und Standards zurückzugreifen. Es ist daher schwer einen geeigneten RM-Prozess aufzubauen, wo wichtige Eingangsgrößen meist unbekannt sind. In diesem Bericht wird beschrieben, welche Informationskanäle es innerhalb Europas zum Thema RM gibt und welche Hochschulen und Forschungszentren Aktivitäten aufweisen. Darüber hinaus werden Anwendungsfelder des RM aufgeführt, die über die bekannten Anwendungsfelder hinaus gehen. Dazu gehören Anwendungen im Bereich der Elektrotechnik, Raumfahrtinstrumentation und der Mode. Obwohl nicht alle Anwendungen des RM in diesem Bericht aufgeführt werden, sind einige Schlüsselinformationen im Bereich innovativer Anwendungen von RM enthalten.
Resumo:
Das Additive Manufacturing gewinnt im Bereich der Medizintechnik zur Herstellung von Prototypen bis hin zu Endprodukten zunehmend an Bedeutung. Ein großes Hemmnis stellen allerdings die relativ hohen Fertigungskosten dar. Hier bietet der verstärkte Einsatz der 3D-Drucktechnologie (3D Printing) ein erhebliches Potential zur Reduktion der Kosten. Aus dieser Motivation heraus wurde ein 3D-Druckverfahren zur Herstellung biokompatibler, sterilisierbarer Kunststoffmodelle entwickelt. Beim 3D-Druck-Verfahren handelt es sich um einen pulverbasierten Prozess zur schichtweisen Herstellung von Modellen direkt aus Computerdaten. Dabei werden dünne Schichten eines Pulvers auf eine Grundplatte aufgebracht, die dann durch gezielte Binderzugabe entsprechend des aktuellen Bauteilquerschnitts verfestigt werden. Ausgangsmaterial für diesen Prozess ist ein Granulatgemisch auf Basis von PMMA (Polymethylmethacrylat). Als Binderflüssigkeit wird ein Lösungsmittel eingesetzt. Die 3D gedruckten Modelle werden nach einer entsprechenden Trocknungszeit im Pulverbett entpackt und warmgelagert, um das Abdampfen des Lösungsmittels zu beschleunigen. Der Nachweis der Biokompatibilität der hergestellten Modelle erfolgte durch einen Test nach DIN EN ISO 10993-5. In Kooperation mit Anwendern wurden verschiedene Anwendungsbeispiele wie Bohrschablonen, Otoplastiken, Gebissmodelle und Modelle für die präoperative Planung realisiert und charakterisiert.
Resumo:
Die Bestandteile des Lean Thinking stellen für die moderne Produktion substantielle Prinzipien und Methoden für die Gestaltung effektiver wie auch gleichzeitig effizienter Systeme bereit. Ein unterstützendes Element bilden hier die Ansätze der Schlanken Logistik. Insbesondere die linienorientierte, variantenreiche Großserienproduktion im Automobilbau ist ein wesentlicher Treiber der Entwicklung. Die permanente Adaption auf mehrstufige Produktionssysteme, wie sie speziell im Druckmaschinenbau vorzufinden sind, erscheint dabei konsequent und sinnvoll. Der vorliegende Artikel stellt dabei wesentliche Voraussetzungen für die erfolgreiche Implementierung heraus und beschreibt die jeweiligen Interdependenzen. Schließlich werden ausgewählte Methoden mittels eines kennzahlenbasierten Messmodells anhand eines Fallbeispiels aus dem Druckmaschinenbau quantifiziert bewertet.
Resumo:
Design rights represent an interesting example of how the EU legislature has successfully regulated an otherwise heterogeneous field of law. Yet this type of protection is not for all. The tools created by EU intervention have been drafted paying much more attention to the industry sector rather than to designers themselves. In particular, modern, digitally based, individual or small-sized, 3D printing, open designers and their needs are largely neglected by such legislation. There is obviously nothing wrong in drafting legal tools around the needs of an industrial sector with an important role in the EU economy, on the contrary, this is a legitimate and good decision of industrial policy. However, good legislation should be fair, balanced, and (technologically) neutral in order to offer suitable solutions to all the players in the market, and all the citizens in the society, without discriminating the smallest or the newest: the cost would be to stifle innovation. The use of printing machinery to manufacture physical objects created digitally thanks to computer programs such as Computer-Aided Design (CAD) software has been in place for quite a few years, and it is actually the standard in many industrial fields, from aeronautics to home furniture. The change in recent years that has the potential to be a paradigm-shifting factor is a combination between the opularization of such technologies (price, size, usability, quality) and the diffusion of a culture based on access to and reuse of knowledge. We will call this blend Open Design. It is probably still too early, however, to say whether 3D printing will be used in the future to refer to a major event in human history, or instead will be relegated to a lonely Wikipedia entry similarly to ³Betamax² (copyright scholars are familiar with it for other reasons). It is not too early, however, to develop a legal analysis that will hopefully contribute to clarifying the major issues found in current EU design law structure, why many modern open designers will probably find better protection in copyright, and whether they can successfully rely on open licenses to achieve their goals. With regard to the latter point, we will use Creative Commons (CC) licenses to test our hypothesis due to their unique characteristic to be modular, i.e. to have different license elements (clauses) that licensors can choose in order to adapt the license to their own needs.”
Resumo:
Eine zunehmende Anzahl von Artikeln in Publikumszeitschriften und Journalen rückt die direkte Herstellung von Bauteilen und Figuren immer mehr in das Bewusstsein einer breiten Öffentlichkeit. Leider ergibt sich nur selten ein einigermaßen vollständiges Bild davon, wie und in welchen Lebensbereichen diese Techniken unseren Alltag verändern werden. Das liegt auch daran, dass die meisten Artikel sehr technisch geprägt sind und sich nur punktuell auf Beispiele stützen. Dieser Beitrag geht von den Bedürfnissen der Menschen aus, wie sie z.B. in der Maslow’schen Bedürfnispyramide strukturiert dargestellt sind und unterstreicht dadurch, dass 3D Printing (oder Additive Manufacturing resp. Rapid Prototyping) bereits alle Lebensbereiche erfasst hat und im Begriff ist, viele davon zu revolutionieren.