7 resultados para Porosity. GPR. Intelligent system. Artificial neural network
em Digital Peer Publishing
Resumo:
Artificial neural networks are based on computational units that resemble basic information processing properties of biological neurons in an abstract and simplified manner. Generally, these formal neurons model an input-output behaviour as it is also often used to characterize biological neurons. The neuron is treated as a black box; spatial extension and temporal dynamics present in biological neurons are most often neglected. Even though artificial neurons are simplified, they can show a variety of input-output relations, depending on the transfer functions they apply. This unit on transfer functions provides an overview of different transfer functions and offers a simulation that visualizes the input-output behaviour of an artificial neuron depending on the specific combination of transfer functions.
Resumo:
Neural Networks as Cybernetic Systems is a textbox that combines classical systems theory with artificial neural network technology.
Resumo:
Neural Networks as Cybernetic Systems is a textbox that combines classical systems theory with artificial neural network technology.
Resumo:
PDP++ is a freely available, open source software package designed to support the development, simulation, and analysis of research-grade connectionist models of cognitive processes. It supports most popular parallel distributed processing paradigms and artificial neural network architectures, and it also provides an implementation of the LEABRA computational cognitive neuroscience framework. Models are typically constructed and examined using the PDP++ graphical user interface, but the system may also be extended through the incorporation of user-written C++ code. This article briefly reviews the features of PDP++, focusing on its utility for teaching cognitive modeling concepts and skills to university undergraduate and graduate students. An informal evaluation of the software as a pedagogical tool is provided, based on the author’s classroom experiences at three research universities and several conference-hosted tutorials.
Resumo:
Simbrain is a visually-oriented framework for building and analyzing neural networks. It emphasizes the analysis of networks which control agents embedded in virtual environments, and visualization of the structures which occur in the high dimensional state spaces of these networks. The program was originally intended to facilitate analysis of representational processes in embodied agents, however it is also well suited to teaching neural networks concepts to a broader audience than is traditional for neural networks courses. Simbrain was used to teach a course at a new university, UC Merced, in its inaugural year. Experiences from the course and sample lessons are provided.
Resumo:
Neural Networks as Cybernetic Systems is a textbox that combines classical systems theory with artificial neural network technology. This third edition essentially compares with the 2nd one, but has been improved by correction of errors and by a rearrangement and minor expansion of the sections referring to recurrent networks. These changes hopefully allow for an easier comprehension of the essential aspects of this important domain that has received growing attention during the last years.
Resumo:
eural Networks as Cybernetic Systems is a textbox that combines classical systems theory with artificial neural network technology. This third edition essentially compares with the 2nd one, but has been improved by correction of errors and by a rearrangement and minor expansion of the sections referring to recurrent networks. These changes hopefully allow for an easier comprehension of the essential aspects of this important domain that has received growing attention during the last years.