1 resultado para Muting experiments
em Digital Peer Publishing
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (54)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (7)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (69)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- CaltechTHESIS (10)
- Cambridge University Engineering Department Publications Database (78)
- CamPuce - an association for the promotion of science and humanities in African Countries (1)
- CentAUR: Central Archive University of Reading - UK (85)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (40)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (8)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (5)
- Digital Howard @ Howard University | Howard University Research (1)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Diposit Digital de la UB - Universidade de Barcelona (3)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (7)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (11)
- Indian Institute of Science - Bangalore - Índia (66)
- Instituto Politécnico do Porto, Portugal (5)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Massachusetts Institute of Technology (2)
- Ministerio de Cultura, Spain (20)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (52)
- Publishing Network for Geoscientific & Environmental Data (67)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (103)
- Queensland University of Technology - ePrints Archive (66)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (27)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- School of Medicine, Washington University, United States (80)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Montréal, Canada (2)
- University of Southampton, United Kingdom (2)
- University of Washington (1)
- WestminsterResearch - UK (2)
Resumo:
Learning is based on rules that can be elucidated by behavioural experiments. This article focuses on virtual experiments, in which non-associative learning (habituation, sensitization) and principles of associative learning (contiguity, inhibitory learning, generalization, overshadowing, positive and negative patterning) can be examined using 'virtual' honey bees in PER (Proboscis Reaction Extension) conditioning experiments. Users can develop experimental designs, simulate and document the experiments and find explanations and suggestions for the analysis of the learning experiments. The virtual experiments are based on video sequences and data from actual learning experiments. The bees' responses are determined by probability-based learning profiles.