1 resultado para Mason bees
em Digital Peer Publishing
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- Applied Math and Science Education Repository - Washington - USA (5)
- Aquatic Commons (22)
- Aston University Research Archive (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (14)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Biodiversity Heritage Library, United States (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (20)
- Boston University Digital Common (2)
- Brock University, Canada (22)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (22)
- CentAUR: Central Archive University of Reading - UK (181)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (15)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (11)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (2)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Greenwich Academic Literature Archive - UK (6)
- Harvard University (7)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (19)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Massachusetts Institute of Technology (2)
- Ministerio de Cultura, Spain (13)
- National Center for Biotechnology Information - NCBI (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (10)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (107)
- Queensland University of Technology - ePrints Archive (164)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (5)
- Repositorio Institucional de la Universidad Nacional Agraria (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (62)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- School of Medicine, Washington University, United States (4)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad del Rosario, Colombia (37)
- Universidad Politécnica de Madrid (1)
- Universidade Federal do Pará (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (4)
- Université de Montréal, Canada (3)
- University of Michigan (113)
- University of Queensland eSpace - Australia (3)
- University of Southampton, United Kingdom (3)
- USA Library of Congress (1)
- WestminsterResearch - UK (2)
Resumo:
Learning is based on rules that can be elucidated by behavioural experiments. This article focuses on virtual experiments, in which non-associative learning (habituation, sensitization) and principles of associative learning (contiguity, inhibitory learning, generalization, overshadowing, positive and negative patterning) can be examined using 'virtual' honey bees in PER (Proboscis Reaction Extension) conditioning experiments. Users can develop experimental designs, simulate and document the experiments and find explanations and suggestions for the analysis of the learning experiments. The virtual experiments are based on video sequences and data from actual learning experiments. The bees' responses are determined by probability-based learning profiles.