2 resultados para Low Autocorrelation Binary Sequence Problem

em Digital Peer Publishing


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Exposure Fusion and other HDR techniques generate well-exposed images from a bracketed image sequence while reproducing a large dynamic range that far exceeds the dynamic range of a single exposure. Common to all these techniques is the problem that the smallest movements in the captured images generate artefacts (ghosting) that dramatically affect the quality of the final images. This limits the use of HDR and Exposure Fusion techniques because common scenes of interest are usually dynamic. We present a method that adapts Exposure Fusion, as well as standard HDR techniques, to allow for dynamic scene without introducing artefacts. Our method detects clusters of moving pixels within a bracketed exposure sequence with simple binary operations. We show that the proposed technique is able to deal with a large amount of movement in the scene and different movement configurations. The result is a ghost-free and highly detailed exposure fused image at a low computational cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The car sequencing problem determines sequences of different car models launched down a mixed-model assembly line. To avoid work overloads of workforce, car sequencing restricts the maximum occurrence of labor-intensive options, e.g., a sunroof, by applying sequencing rules. We consider this problem in a resequencing context, where a given number of buffers (denoted as pull-off tables) is available for rearranging a stirred sequence. The problem is formalized and suited solution procedures are developed. A lower bound and a dominance rule are introduced which both reduce the running time of our graph approach. Finally, a real-world resequencing setting is investigated.