3 resultados para Input Modalities

em Digital Peer Publishing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the laboratory of Dr. Dieter Jaeger at Emory University, we use computer simulations to study how the biophysical properties of neurons—including their three-dimensional structure, passive membrane resistance and capacitance, and active membrane conductances generated by ion channels—affect the way that the neurons transfer synaptic inputs into the action potential streams that represent their output. Because our ultimate goal is to understand how neurons process and relay information in a living animal, we try to make our computer simulations as realistic as possible. As such, the computer models reflect the detailed morphology and all of the ion channels known to exist in the particular neuron types being simulated, and the model neurons are tested with synaptic input patterns that are intended to approximate the inputs that real neurons receive in vivo. The purpose of this workshop tutorial was to explain what we mean by ‘in vivo-like’ synaptic input patterns, and how we introduce these input patterns into our computer simulations using the freely available GENESIS software package (http://www.genesis-sim.org/GENESIS). The presentation was divided into four sections: first, an explanation of what we are talking about when we refer to in vivo-like synaptic input patterns

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The full-body control of virtual characters is a promising technique for application fields such as Virtual Prototyping. However it is important to assess to what extent the user full-body behavior is modified when immersed in a virtual environment. In the present study we have measured reach durations for two types of task (controlling a simple rigid shape vs. a virtual character) and two types of viewpoint (1st person vs. 3rd person). The paper first describes the architecture of the motion capture approach retained for the on-line full-body reach experiment. We then present reach measurement results performed in a non-virtual environment. They show that the target height parameter leads to reach duration variation of ∓25% around the average duration for the highest and lowest targets. This characteristic is highly accentuated in the virtual world as analyzed in the discussion section. In particular, the discrepancy observed for the first person viewpoint modality suggests to adopt a third person viewpoint when controling the posture of a virtual character in a virtual environment.

Relevância:

20.00% 20.00%

Publicador: