12 resultados para Informal Learning Environment
em Digital Peer Publishing
Resumo:
Mobile learning, in the past defined as learning with mobile devices, now refers to any type of learning-on-the-go or learning that takes advantage of mobile technologies. This new definition shifted its focus from the mobility of technology to the mobility of the learner (O'Malley and Stanton 2002; Sharples, Arnedillo-Sanchez et al. 2009). Placing emphasis on the mobile learner’s perspective requires studying “how the mobility of learners augmented by personal and public technology can contribute to the process of gaining new knowledge, skills, and experience” (Sharples, Arnedillo-Sanchez et al. 2009). The demands of an increasingly knowledge based society and the advances in mobile phone technology are combining to spur the growth of mobile learning. Around the world, mobile learning is predicted to be the future of online learning, and is slowly entering the mainstream education. However, for mobile learning to attain its full potential, it is essential to develop more advanced technologies that are tailored to the needs of this new learning environment. A research field that allows putting the development of such technologies onto a solid basis is user experience design, which addresses how to improve usability and therefore user acceptance of a system. Although there is no consensus definition of user experience, simply stated it focuses on how a person feels about using a product, system or service. It is generally agreed that user experience adds subjective attributes and social aspects to a space that has previously concerned itself mainly with ease-of-use. In addition, it can include users’ perceptions of usability and system efficiency. Recent advances in mobile and ubiquitous computing technologies further underline the importance of human-computer interaction and user experience (feelings, motivations, and values) with a system. Today, there are plenty of reports on the limitations of mobile technologies for learning (e.g., small screen size, slow connection), but there is a lack of research on user experience with mobile technologies. This dissertation will fill in this gap by a new approach in building a user experience-based mobile learning environment. The optimized user experience we suggest integrates three priorities, namely a) content, by improving the quality of delivered learning materials, b) the teaching and learning process, by enabling live and synchronous learning, and c) the learners themselves, by enabling a timely detection of their emotional state during mobile learning. In detail, the contributions of this thesis are as follows: • A video codec optimized for screencast videos which achieves an unprecedented compression rate while maintaining a very high video quality, and a novel UI layout for video lectures, which together enable truly mobile access to live lectures. • A new approach in HTTP-based multimedia delivery that exploits the characteristics of live lectures in a mobile context and enables a significantly improved user experience for mobile live lectures. • A non-invasive affective learning model based on multi-modal emotion detection with very high recognition rates, which enables real-time emotion detection and subsequent adaption of the learning environment on mobile devices. The technology resulting from the research presented in this thesis is in daily use at the School of Continuing Education of Shanghai Jiaotong University (SOCE), a blended-learning institution with 35.000 students.
Resumo:
Ausgehend von der typischen IT‐Infrastruktur für E‐Learning an Hochschulen auf der einen Seite sowie vom bisherigen Stand der Forschung zu Personal Learning Environments (PLEs) auf der anderen Seite zeigt dieser Beitrag auf, wie bestehende Werkzeuge bzw. Dienste zusammengeführt und für die Anforderungen der modernen, rechnergestützten Präsenzlehre aufbereitet werden können. Für diesen interdisziplinären Entwicklungsprozess bieten sowohl klassische Softwareentwicklungsverfahren als auch bestehende PLE‐Modelle wenig Hilfestellung an. Der Beitrag beschreibt die in einem campusweiten Projekt an der Universität Potsdam verfolgten Ansätze und die damit erzielten Ergebnisse. Dafür werden zunächst typische Lehr‐/Lern‐bzw. Kommunikations‐Szenarien identifiziert, aus denen Anforderungen an eine unterstützende Plattform abgeleitet werden. Dies führt zu einer umfassenden Sammlung zu berücksichtigender Dienste und deren Funktionen, die gemäß den Spezifika ihrer Nutzung in ein Gesamtsystem zu integrieren sind. Auf dieser Basis werden grundsätzliche Integrationsansätze und technische Details dieses Mash‐Ups in einer Gesamtschau aller relevanten Dienste betrachtet und in eine integrierende Systemarchitektur überführt. Deren konkrete Realisierung mit Hilfe der Portal‐Technologie Liferay wird dargestellt, wobei die eingangs definierten Szenarien aufgegriffen und exemplarisch vorgestellt werden. Ergänzende Anpassungen im Sinne einer personalisierbaren bzw. adaptiven Lern‐(und Arbeits‐)Umgebung werden ebenfalls unterstützt und kurz aufgezeigt.
Resumo:
Today, Digital Systems and Services for Technology Supported Learning and Education are recognized as the key drivers to transform the way that individuals, groups and organizations “learn” and the way to “assess learning” in 21st Century. These transformations influence: Objectives - moving from acquiring new “knowledge” to developing new and relevant “competences”; Methods – moving from “classroom” based teaching to “context-aware” personalized learning; and Assessment – moving from “life-long” degrees and certifications to “on-demand” and “in-context” accreditation of qualifications. Within this context, promoting Open Access to Formal and Informal Learning, is currently a key issue in the public discourse and the global dialogue on Education, including Massive Open Online Courses (MOOCs) and Flipped School Classrooms. This volume on Digital Systems for Open Access to Formal and Informal Learning contributes to the international dialogue between researchers, technologists, practitioners and policy makers in Technology Supported Education and Learning. It addresses emerging issues related with both theory and practice, as well as, methods and technologies that can support Open Access to Formal and Informal Learning. In the twenty chapters contributed by international experts who are actively shaping the future of Educational Technology around the world, topics such as: - The evolution of University Open Courses in Transforming Learning - Supporting Open Access to Teaching and Learning of People with Disabilities - Assessing Student Learning in Online Courses - Digital Game-based Learning for School Education - Open Access to Virtual and Remote Labs for STEM Education - Teachers’ and Schools’ ICT Competence Profiling - Web-Based Education and Innovative Leadership in a K-12 International School Setting are presented. An in-depth blueprint of the promise, potential, and imminent future of the field, Digital Systems for Open Access to Formal and Informal Learning is necessary reading for researchers and practitioners, as well as, undergraduate and postgraduate students, in educational technology.
Resumo:
Dieser Projektbericht beschreibt eine Lehrveranstaltung, die den Studierenden in der Theorie genau das vermittelte, was sie direkt in der Praxis erfahren konnten: E-Learning. Die enge Koppelung von Wissensvermittlung und praktischer Umsetzung setzte auf ein ungewöhnliches Modell der Lernzeitorganisation. Von den Lernenden wie vom Lehrenden verlangte das Blended-Learning-Seminar die Bereitschaft, das übliche Selbstverständnis in Lehr-Lern-Kontexten an Hochschulen zu überdenken. Dieser Bericht stellt die inhaltliche und strukturelle Ausgangssituation dar, beschreibt die Organisation der Veranstaltung sowie die eingesetzten Methoden und Mittel und reflektiert die Lernerfolge.
Resumo:
In this article the use of Learning Management Systems (LMS) at the School of Engineering, University of Borås, in the year 2004 and the academic year 2009-2010 is investigated. The tools in the LMS were classified into four groups (tools for distribution, tools for communication, tools for interaction and tools for course administration) and the pattern of use was analyzed. The preliminary interpretation of the results was discussed with a group of teachers from the School of Engineering with long experience of using LMS. High expectations about LMS as a tool to facilitate flexible education, student centered methods and the creation of an effective learning environment is abundant in the literature. This study, however, shows that in most of the surveyed courses the available LMS is predominantly used to distribute documents to students. The authors argue that a more elaborate use of LMS and a transformation of pedagogical practices towards social constructivist, learner centered procedures should be treated as an integrated process of professional development.
Resumo:
In an international perspective cooperation between social services and school has a long tradition. In the German speaking countries we can recognize a historical distance or gap between school and “social pedagogy”, but despite this tradition new forms of cooperation are arising since the last few years. This tendency is part of the development of European societies into “knowledge-based societies” where knowledge and cultural capital are becoming ever stricter criteria for participation in society. This puts particular pressure on those adolescents who threaten to fail in the positional competition for educational qualifications. And it tends to the reproduction and reinforcing of social inequalities due to inequalities in education. For that reason in the article the development of school related social services in different European countries is investigated and it is shown that the increasing pressure to qualification and selection in school creates various problems of integration. Social dimensions of education are pointed out delivering starting points for the cooperation of social services in school and opening opportunities for productive forms of coping with differences between family background, informal social environment and educational milieu in school. Particular attention is paid to differences in socio cultural habits, in socio economical opportunities and in collective practices of interaction. A central focus in the contribution is the orientation towards a participative civil society climate relevant for the interaction between teachers and pupils and between professionals and addressees of social services as well. It is a task of future research in school related social services to analyse their institutional structure and their practices of professional interaction and to find out by European and international comparison in which way social services can contribute to the establishing of a participative civil society climate in school.
Resumo:
In autumn 2005 InWEnt (Internationale Weiterbildung und Entwicklung/Capacity Building International gGmbH) on behalf of the EU invited to tender for three web based trainings (WBT). The precondition: either the open-source-platform Stud.IP or ILIAS should be used. The company data-quest decided not to offer the use of either Stud.IP or ILIAS, but both in combination - and won the contract. Several month later, the new learning environment with the combined powers of Stud.IP and ILIAS was ready to serve WBT-participants from all over the world. The following text describes the EU-Project "Efficient Management of Wastewater, its Treatment and Reuse in the Mediterranean Countries" (EMWater), the WBT concept and the experiences with the new Stud.IP-ILIAS-interface.
Resumo:
In recent years interactive media and tools, like scientific simulations and simulation environments or dynamic data visualizations, became established methods in the neural and cognitive sciences. Hence, university teachers of neural and cognitive sciences are faced with the challenge to integrate these media into the neuroscientific curriculum. Especially simulations and dynamic visualizations offer great opportunities for teachers and learners, since they are both illustrative and explorable. However, simulations bear instructional problems: they are abstract, demand some computer skills and conceptual knowledge about what simulations intend to explain. By following two central questions this article provides an overview on possible approaches to be applied in neuroscience education and opens perspectives for their curricular integration: (i) How can complex scientific media be transformed for educational use in an efficient and (for students on all levels) comprehensible manner and (ii) by what technical infrastructure can this transformation be supported? Exemplified by educational simulations for the neurosciences and their application in courses, answers to these questions are proposed a) by introducing a specific educational simulation approach for the neurosciences b) by introducing an e-learning environment for simulations, and c) by providing examples of curricular integration on different levels which might help academic teachers to integrate newly created or existing interactive educational resources in their courses.
Resumo:
The next generation of learners expect more informality in learning. Formal learning systems such as traditional LMS systems no longer meet the needs of a generation of learners used to Twitter and Facebook, social networking and user-generated content. Regardless of this, however, formal content and learning models are still important and play a major role in educating learners, particularly in enterprise. The eLite project at DERI addressed this emerging dichotomy of learning styles, reconciling the traditional with the avant garde by using innovative technology to add informal learning capabilities to formal learning architectures.
Abstrahierendes Lernen durch aktive Modellbildung: Evaluation eines Prozesses und einer Lernumgebung
Resumo:
Die Fähigkeit zum Lernen durch Abstraktion aus Erfahrungen unterscheidet Experten von Novizen. Wir stellen einen Prozess für individuelles abstrahierendes Lernen und eine diesen Prozess unterstützende Lernumgebung vor. Die Ergebnisse einer Pilotstudie zeigen, dass Lernende unter Nutzung der Lernumgebung aus Fallbeispielen ein abstraktes Modell erstellen und über ihren Prozess reflektieren konnten. Dies fiel ihnen leichter, wenn die Fallbeispiele wenige gemeinsame Oberflächenmerkmale aufwiesen. Im Gegensatz zum intendierten Lernprozess wandten manche Lernende einen anderen Prozess an.