3 resultados para Group idea generation support system
em Digital Peer Publishing
Resumo:
Open Source (OS) community offers numerous eLearning platforms of both types: Learning Management Systems (LMS) and Learning Content Systems (LCS). General purpose OS intermediaries such as SourceForge, ObjectWeb, Apache or specialized intermediaries like CampusSource reduce the cost to locate such eLearning platforms. Still, it is impossible to directly compare the functionalities of those OS software products without performing detailed testing on each product. Some articles available from eLearning Wikipedia show comparisons between eLearning platforms which can help, but at the end they barely serve as documentation which are becoming out of date quickly [1]. The absence of integration activities between OS eLearning platforms - which are sometimes quite similar in terms of functionalities and implementation technologies - is sometimes critical since most of the OS projects possess small financial and human resources. This paper shows a possible solution for these barriers of OS eLearning platforms. We propose the Model Driven Architecture (MDA) concept to capture functionalities and to identify similarities between available OS eLearning platforms. This contribution evolved from a fruitful discussion at the 2nd CampusSource Developer Conference at the University of Muenster (27th August 2004).
Resumo:
The recent liberalization of the German energy market has forced the energy industry to develop and install new information systems to support agents on the energy trading floors in their analytical tasks. Besides classical approaches of building a data warehouse giving insight into the time series to understand market and pricing mechanisms, it is crucial to provide a variety of external data from the web. Weather information as well as political news or market rumors are relevant to give the appropriate interpretation to the variables of a volatile energy market. Starting from a multidimensional data model and a collection of buy and sell transactions a data warehouse is built that gives analytical support to the agents. Following the idea of web farming we harvest the web, match the external information sources after a filtering and evaluation process to the data warehouse objects, and present this qualified information on a user interface where market values are correlated with those external sources over the time axis.
Resumo:
For broadcasting purposes MIXED REALITY, the combination of real and virtual scene content, has become ubiquitous nowadays. Mixed Reality recording still requires expensive studio setups and is often limited to simple color keying. We present a system for Mixed Reality applications which uses depth keying and provides threedimensional mixing of real and artificial content. It features enhanced realism through automatic shadow computation which we consider a core issue to obtain realism and a convincing visual perception, besides the correct alignment of the two modalities and correct occlusion handling. Furthermore we present a possibility to support placement of virtual content in the scene. Core feature of our system is the incorporation of a TIME-OF-FLIGHT (TOF)-camera device. This device delivers real-time depth images of the environment at a reasonable resolution and quality. This camera is used to build a static environment model and it also allows correct handling of mutual occlusions between real and virtual content, shadow computation and enhanced content planning. The presented system is inexpensive, compact, mobile, flexible and provides convenient calibration procedures. Chroma-keying is replaced by depth-keying which is efficiently performed on the GRAPHICS PROCESSING UNIT (GPU) by the usage of an environment model and the current ToF-camera image. Automatic extraction and tracking of dynamic scene content is herewith performed and this information is used for planning and alignment of virtual content. An additional sustainable feature is that depth maps of the mixed content are available in real-time, which makes the approach suitable for future 3DTV productions. The presented paper gives an overview of the whole system approach including camera calibration, environment model generation, real-time keying and mixing of virtual and real content, shadowing for virtual content and dynamic object tracking for content planning.