2 resultados para Firing
em Digital Peer Publishing
Resumo:
Almost all regions of the brain receive one or more neuromodulatory inputs, and disrupting these inputs produces deficits in neuronal function. Neuromodulators act through intracellular second messenger pathways to influence the electrical properties of neurons, integration of synaptic inputs, spatio-temporal firing dynamics of neuronal networks, and, ultimately, systems behavior. Second messengers pathways consist of series of bimolecular reactions, enzymatic reactions, and diffusion. Calcium is the second messenger molecule with the most effectors, and thus is highly regulated by buffers, pumps and intracellular stores. Computational modeling provides an innovative, yet practical method to evaluate the spatial extent, time course and interaction among second messenger pathways, and the interaction of second messengers with neuron electrical properties. These processes occur both in compartments where the number of molecules are large enough to describe reactions deterministically (e.g. cell body), and in compartments where the number of molecules is small enough that reactions occur stochastically (e.g. spines). – In this tutorial, I explain how to develop models of second messenger pathways and calcium dynamics. The first part of the tutorial explains the equations used to model bimolecular reactions, enzyme reactions, calcium release channels, calcium pumps and diffusion. The second part explains some of the GENESIS, Kinetikit and Chemesis objects that implement the appropriate equations. In depth explanation of calcium and second messenger models is provided by reviewing code, both in XPP, Chemesis and Kinetikit, that implements simple models of calcium dynamics and second messenger cascades.
Resumo:
SPatch is an open source virtual laboratory designed to perform simulated electrophysiological experiments without the technical difficulties inherent to laboratory work. It provides the core equipment necessary for recording neuronal activity and allows the user to install the equipment, design their own protocols, prepare solutions to bathe the preparation or to fill the electrodes, and gather data. Assistance is provided for most steps with predefined components that are appropriate to a range of standard procedures. Experiments that can be performed with SPatch at present concern the study of voltage-gated channels in isolated neurons. This allows understanding the ionic mechanisms of Na+ and Ca2+ action potentials, after spike hyperpolarization, pacemaker tonic or bursting activity of neurons, delayed or sustained or adaptive firing of neurons in response to a depolarization, spontaneous depolarization of the membrane following an hyperpolarization, etc. In an educational context, the main interest of SPatch is to allow students to focus on the concepts and thought processes of electrophysiological investigation without the high equipment costs and extensive training required to perform laboratory work. It can be used to acquaint students with the relevant procedures before starting work in a real lab, or to give students an understanding of single neuron behavior and the ways it can be studied without requiring practical work. We illustrate the function and use of SPatch, explore educational issues arising from the inevitable differences between simulated and real laboratory work, and outline possible improvements.