4 resultados para Facial Object Based Method

em Digital Peer Publishing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of approximating the 3D scan of a real object through an affine combination of examples. Common approaches depend either on the explicit estimation of point-to-point correspondences or on 2-dimensional projections of the target mesh; both present drawbacks. We follow an approach similar to [IF03] by representing the target via an implicit function, whose values at the vertices of the approximation are used to define a robust cost function. The problem is approached in two steps, by approximating first a coarse implicit representation of the whole target, and then finer, local ones; the local approximations are then merged together with a Poisson-based method. We report the results of applying our method on a subset of 3D scans from the Face Recognition Grand Challenge v.1.0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an image-based method for relighting a scene by analytically fitting cosine lobes to the reflectance function at each pixel, based on gradient illumination photographs. Realistic relighting results for many materials are obtained using a single per-pixel cosine lobe obtained from just two color photographs: one under uniform white illumination and the other under colored gradient illumination. For materials with wavelength-dependent scattering, a better fit can be obtained using independent cosine lobes for the red, green, and blue channels, obtained from three achromatic gradient illumination conditions instead of the colored gradient condition. We explore two cosine lobe reflectance functions, both of which allow an analytic fit to the gradient conditions. One is non-zero over half the sphere of lighting directions, which works well for diffuse and specular materials, but fails for materials with broader scattering such as fur. The other is non-zero everywhere, which works well for broadly scattering materials and still produces visually plausible results for diffuse and specular materials. We also perform an approximate diffuse/specular separation of the reflectance, and estimate scene geometry from the recovered photometric normals to produce hard shadows cast by the geometry, while still reconstructing the input photographs exactly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decentralised controls offer advantages for the implementation as well as the operation of controls of steady conveyors. Such concepts are mainly based on RFID. Due to the reduced expense for appliances and software, however, the plant behaviour cannot be determined as accurately as in centrally controlled systems. This article describes a simulation-based method by which the performances of these two control concepts can easily be evaluated in order to determine the suitability of the decentralised concept.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, depth cameras have been widely utilized in camera tracking for augmented and mixed reality. Many of the studies focus on the methods that generate the reference model simultaneously with the tracking and allow operation in unprepared environments. However, methods that rely on predefined CAD models have their advantages. In such methods, the measurement errors are not accumulated to the model, they are tolerant to inaccurate initialization, and the tracking is always performed directly in reference model's coordinate system. In this paper, we present a method for tracking a depth camera with existing CAD models and the Iterative Closest Point (ICP) algorithm. In our approach, we render the CAD model using the latest pose estimate and construct a point cloud from the corresponding depth map. We construct another point cloud from currently captured depth frame, and find the incremental change in the camera pose by aligning the point clouds. We utilize a GPGPU-based implementation of the ICP which efficiently uses all the depth data in the process. The method runs in real-time, it is robust for outliers, and it does not require any preprocessing of the CAD models. We evaluated the approach using the Kinect depth sensor, and compared the results to a 2D edge-based method, to a depth-based SLAM method, and to the ground truth. The results show that the approach is more stable compared to the edge-based method and it suffers less from drift compared to the depth-based SLAM.