5 resultados para FEA simulations
em Digital Peer Publishing
Resumo:
While sound and video may capture viewers' attention, interaction can captivate them. This has not been available prior to the advent of Digital Television. In fact, what lies at the heart of the Digital Television revolution is this new type of interactive content, offered in the form of interactive Television (iTV) services. On top of that, the new world of converged networks has created a demand for a new type of converged services on a range of mobile terminals (Tablet PCs, PDAs and mobile phones). This paper aims at presenting a new approach to service creation that allows for the semi-automatic translation of simulations and rapid prototypes created in the accessible desktop multimedia authoring package Macromedia Director into services ready for broadcast. This is achieved by a series of tools that de-skill and speed-up the process of creating digital TV user interfaces (UI) and applications for mobile terminals. The benefits of rapid prototyping are essential for the production of these new types of services, and are therefore discussed in the first section of this paper. In the following sections, an overview of the operation of content, service, creation and management sub-systems is presented, which illustrates why these tools compose an important and integral part of a system responsible of creating, delivering and managing converged broadcast and telecommunications services. The next section examines a number of metadata languages candidates for describing the iTV services user interface and the schema language adopted in this project. A detailed description of the operation of the two tools is provided to offer an insight of how they can be used to de-skill and speed-up the process of creating digital TV user interfaces and applications for mobile terminals. Finally, representative broadcast oriented and telecommunication oriented converged service components are also introduced, demonstrating how these tools have been used to generate different types of services.
Resumo:
Neurons in Action (NIA1, 2000; NIA1.5, 2004; NIA2, 2007), a set of tutorials and linked simulations, is designed to acquaint students with neuronal physiology through interactive, virtual laboratory experiments. Here we explore the uses of NIA in lecture, both interactive and didactic, as well as in the undergraduate laboratory, in the graduate seminar course, and as an examination tool through homework and problem set assignments. NIA, made with the simulator NEURON (http://www.neuron.yale.edu/neuron/), displays voltages, currents, and conductances in a membrane patch or signals moving within the dendrites, soma and/or axon of a neuron. Customized simulations start with the plain lipid bilayer and progress through equilibrium potentials; currents through single Na and K channels; Na and Ca action potentials; voltage clamp of a patch or a whole neuron; voltage spread and propagation in axons, motoneurons and nerve terminals; synaptic excitation and inhibition; and advanced topics such as channel kinetics and coincidence detection. The user asks and answers "what if" questions by specifying neuronal parameters, ion concentrations, and temperature, and the experimental results are then plotted as conductances, currents, and voltage changes. Such exercises provide immediate confirmation or refutation of the student's ideas to guide their learning. The tutorials are hyperlinked to explanatory information and to original research papers. Although the NIA tutorials were designed as a sequence to empower a student with a working knowledge of fundamental neuronal principles, we find that faculty are using the individual tutorials in a variety of educational situations, some of which are described here. Here we offer ideas to colleagues using interactive software, whether NIA or another tool, for educating students of differing backgrounds in the subject of neurophysiology.
Resumo:
In recent years interactive media and tools, like scientific simulations and simulation environments or dynamic data visualizations, became established methods in the neural and cognitive sciences. Hence, university teachers of neural and cognitive sciences are faced with the challenge to integrate these media into the neuroscientific curriculum. Especially simulations and dynamic visualizations offer great opportunities for teachers and learners, since they are both illustrative and explorable. However, simulations bear instructional problems: they are abstract, demand some computer skills and conceptual knowledge about what simulations intend to explain. By following two central questions this article provides an overview on possible approaches to be applied in neuroscience education and opens perspectives for their curricular integration: (i) How can complex scientific media be transformed for educational use in an efficient and (for students on all levels) comprehensible manner and (ii) by what technical infrastructure can this transformation be supported? Exemplified by educational simulations for the neurosciences and their application in courses, answers to these questions are proposed a) by introducing a specific educational simulation approach for the neurosciences b) by introducing an e-learning environment for simulations, and c) by providing examples of curricular integration on different levels which might help academic teachers to integrate newly created or existing interactive educational resources in their courses.
Resumo:
Die hohe Komplexität zellularer intralogistischer Systeme und deren Steuerungsarchitektur legt die Verwendung moderner Simulations- und Visualisierungstechniken nahe, um schon im Vorfeld Aussagen über die Leistungsfähigkeit und Zukunftssicherheit eines geplanten Systems treffen zu können. In dieser Arbeit wird ein Konzept für ein Simulationssystem zur VR-basierten Steuerungsverifikation zellularer Intralogistiksysteme vorgestellt. Beschrieben wird die Erstellung eines Simulationsmodells für eine real existierende Anlage und es wird ein Überblick über die Bestandteile der Simulation, insbesondere die Anbindung der Steuerung des realen agentenbasierten Systems, gegeben.
Resumo:
Die Bestimmung der Leistungsverfügbarkeit als Maß für den Erfüllungsgrad logistischer Prozesse erfolgt gewöhnlich während des Betriebes einer logistischen Anlage. Wir haben ein Simulationssystem entwickelt, um die Leistungsverfügbarkeit einer zellularen intralogistischen Anlage schon im Vorfeld ermitteln zu können. Die detailgenaue Simulation erfasst dabei nicht nur Einflüsse statischer Parameter wie Dimensionierung der Anlage sondern auch dynamische Parameter, wie Fahrzeugverhalten oder Auftragszusammensetzung. Aufgrund der Echtzeit- und VR-Fähigkeit des vorgestellten Systems, ist eine Präsentation in einer VR-Umgebung möglich. Intuitive Interaktionsmechanismen und Visualisierungs-Metaphern bieten einen intuitiven Zugang zur Leistungsverfügbarkeit des Systems und den Größen, die sie beeinflussen.