4 resultados para Equations of motion.

em Digital Peer Publishing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physically-based modeling for computer animation allows to produce more realistic motions in less time without requiring the expertise of skilled animators. But, a computer animation is not only a numerical simulation based on classical mechanics since it follows a precise story-line. One common way to define aims in an animation is to add geometric constraints. There are several methods to manage these constraints within a physically-based framework. In this paper, we present an algorithm for constraints handling based on Lagrange multipliers. After few remarks on the equations of motion that we use, we present a first algorithm proposed by Platt. We show with a simple example that this method is not reliable. Our contribution consists in improving this algorithm to provide an efficient and robust method to handle simultaneous active constraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we investigate how a multilinear model can be used to represent human motion data. Based on technical modes (referring to degrees of freedom and number of frames) and natural modes that typically appear in the context of a motion capture session (referring to actor, style, and repetition), the motion data is encoded in form of a high-order tensor. This tensor is then reduced by using N-mode singular value decomposition. Our experiments show that the reduced model approximates the original motion better then previously introduced PCA-based approaches. Furthermore, we discuss how the tensor representation may be used as a valuable tool for the synthesis of new motions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Methods for optical motion capture often require timeconsuming manual processing before the data can be used for subsequent tasks such as retargeting or character animation. These processing steps restrict the applicability of motion capturing especially for dynamic VR-environments with real time requirements. To solve these problems, we present two additional, fast and automatic processing stages based on our motion capture pipeline presented in [HSK05]. A normalization step aligns the recorded coordinate systems with the skeleton structure to yield a common and intuitive data basis across different recording sessions. A second step computes a parameterization based on automatically extracted main movement axes to generate a compact motion description. Our method does not restrict the placement of marker bodies nor the recording setup, and only requires a short calibration phase.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This manuscript details a technique for estimating gesture accuracy within the context of motion-based health video games using the MICROSOFT KINECT. We created a physical therapy game that requires players to imitate clinically significant reference gestures. Player performance is represented by the degree of similarity between the performed and reference gestures and is quantified by collecting the Euler angles of the player's gestures, converting them to a three-dimensional vector, and comparing the magnitude between the vectors. Lower difference values represent greater gestural correspondence and therefore greater player performance. A group of thirty-one subjects was tested. Subjects achieved gestural correspondence sufficient to complete the game's objectives while also improving their ability to perform reference gestures accurately.