2 resultados para Edge-to-edge Matching
em Digital Peer Publishing
Resumo:
This paper presents an empirical study of affine invariant feature detectors to perform matching on video sequences of people with non-rigid surface deformation. Recent advances in feature detection and wide baseline matching have focused on static scenes. Video frames of human movement capture highly non-rigid deformation such as loose hair, cloth creases, skin stretching and free flowing clothing. This study evaluates the performance of six widely used feature detectors for sparse temporal correspondence on single view and multiple view video sequences. Quantitative evaluation is performed of both the number of features detected and their temporal matching against and without ground truth correspondence. Recall-accuracy analysis of feature matching is reported for temporal correspondence on single view and multiple view sequences of people with variation in clothing and movement. This analysis identifies that existing feature detection and matching algorithms are unreliable for fast movement with common clothing.
Resumo:
When stereo images are captured under less than ideal conditions, there may be inconsistencies between the two images in brightness, contrast, blurring, etc. When stereo matching is performed between the images, these variations can greatly reduce the quality of the resulting depth map. In this paper we propose a method for correcting sharpness variations in stereo image pairs which is performed as a pre-processing step to stereo matching. Our method is based on scaling the 2D discrete cosine transform (DCT) coefficients of both images so that the two images have the same amount of energy in each of a set of frequency bands. Experiments show that applying the proposed correction method can greatly improve the disparity map quality when one image in a stereo pair is more blurred than the other.