3 resultados para Dynamic control

em Digital Peer Publishing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today’s material flow systems for mass customization or dynamic productions are usually realized with manual transportation systems. However new concepts in the domain of material flow and device control like function-oriented modularization and intelligent multi-agent-systems offer the possibility to employ changeable and automated material flow systems in dynamic production structures. These systems need the ability to react on unplanned and unexpected events autonomously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continuous conveyors with a dynamic merge were developed with adaptable control equipment to differentiate these merges from competing Stop-and-Go merges. With a dynamic merge, the partial flows are manipulated by influencing speeds so that transport units need not stop for the merge. This leads to a more uniform flow of materials, which is qualitatively observable and verifiable in long-term measurements. And although this type of merge is visually mesmerizing, does it lead to advantages from the view of material flow technology? Our study with real data indicates that a dynamic merge shows a 24% increase in performance, but only for symmetric or nearly symmetric flows. This performance advantage decreases as the flows become less symmetric, approaching the throughput of traditional Stop-and-Go merges. And with a cost premium for a continuous merge of approximately 10% due to the additional technical components (belt conveyor, adjustable drive engines, software, etc.), this restricts their economical use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Opaque products enable service providers to hide specific characteristics of their service fulfillment from the customer until after purchase. Prominent examples include internet-based service providers selling airline tickets without defining details, such as departure time or operating airline, until the booking has been made. Owing to the resulting flexibility in resource utilization, the traditional revenue management process needs to be modified. In this paper, we extend dynamic programming decomposition techniques widely used for traditional revenue management to develop an intuitive capacity control approach that allows for the incorporation of opaque products. In a simulation study, we show that the developed approach significantly outperforms other well-known capacity control approaches adapted to the opaque product setting. Based on the approach, we also provide computational examples of how the share of opaque products as well as the degree of opacity can influence the results.