58 resultados para Dimensional Modeling and Virtual Reality

em Digital Peer Publishing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on a Virtual Reality theater experiment named Il était Xn fois, conducted by artists and computer scientists working in cognitive science. It offered the opportunity for knowledge and ideas exchange between these groups, highlighting the benefits of collaboration of this kind. Section 1 explains the link between enaction in cognitive science and virtual reality, and specifically the need to develop an autonomous entity which enhances presence in an artificial world. Section 2 argues that enactive artificial intelligence is able to produce such autonomy. This was demonstrated by the theatrical experiment, "Il était Xn fois" (in English: Once upon Xn time), explained in section 3. Its first public performance was in 2009, by the company Dérézo. The last section offers the view that enaction can form a common ground between the artistic and computer science areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tracking user’s visual attention is a fundamental aspect in novel human-computer interaction paradigms found in Virtual Reality. For example, multimodal interfaces or dialogue-based communications with virtual and real agents greatly benefit from the analysis of the user’s visual attention as a vital source for deictic references or turn-taking signals. Current approaches to determine visual attention rely primarily on monocular eye trackers. Hence they are restricted to the interpretation of two-dimensional fixations relative to a defined area of projection. The study presented in this article compares precision, accuracy and application performance of two binocular eye tracking devices. Two algorithms are compared which derive depth information as required for visual attention-based 3D interfaces. This information is further applied to an improved VR selection task in which a binocular eye tracker and an adaptive neural network algorithm is used during the disambiguation of partly occluded objects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixed Reality (MR) aims to link virtual entities with the real world and has many applications such as military and medical domains [JBL+00, NFB07]. In many MR systems and more precisely in augmented scenes, one needs the application to render the virtual part accurately at the right time. To achieve this, such systems acquire data related to the real world from a set of sensors before rendering virtual entities. A suitable system architecture should minimize the delays to keep the overall system delay (also called end-to-end latency) within the requirements for real-time performance. In this context, we propose a compositional modeling framework for MR software architectures in order to specify, simulate and validate formally the time constraints of such systems. Our approach is first based on a functional decomposition of such systems into generic components. The obtained elements as well as their typical interactions give rise to generic representations in terms of timed automata. A whole system is then obtained as a composition of such defined components. To write specifications, a textual language named MIRELA (MIxed REality LAnguage) is proposed along with the corresponding compilation tools. The generated output contains timed automata in UPPAAL format for simulation and verification of time constraints. These automata may also be used to generate source code skeletons for an implementation on a MR platform. The approach is illustrated first on a small example. A realistic case study is also developed. It is modeled by several timed automata synchronizing through channels and including a large number of time constraints. Both systems have been simulated in UPPAAL and checked against the required behavioral properties.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose the use of specific system architecture, based on mobile device, for navigation in urban environments. The aim of this work is to assess how virtual and augmented reality interface paradigms can provide enhanced location based services using real-time techniques in the context of these two different technologies. The virtual reality interface is based on faithful graphical representation of the localities of interest, coupled with sensory information on the location and orientation of the user, while the augmented reality interface uses computer vision techniques to capture patterns from the real environment and overlay additional way-finding information, aligned with real imagery, in real-time. The knowledge obtained from the evaluation of the virtual reality navigational experience has been used to inform the design of the augmented reality interface. Initial results of the user testing of the experimental augmented reality system for navigation are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind and warmth sensations proved to be able to enhance users' state of presence in Virtual Reality applications. Still, only few projects deal with their detailed effect on the user and general ways of implementing such stimuli. This work tries to fill this gap: After analyzing requirements for hardware and software concerning wind and warmth simulations, a hardware and also a software setup for the application in a CAVE environment is proposed. The setup is evaluated with regard to technical details and requirements, but also - in the form of a pilot study - in view of user experience and presence. Our setup proved to comply with the requirements and leads to satisfactory results. To our knowledge, the low cost simulation system (approx. 2200 Euro) presented here is one of the most extensive, most flexible and best evaluated systems for creating wind and warmth stimuli in CAVE-based VR applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human behavior is a major factor modulating the consequences of road tunnel accidents. We investigated the effect of information and instruction on drivers' behavior as well as the usability of virtual environments to simulate such emergency situations. Tunnel safety knowledge of the general population was assessed using an online questionnaire, and tunnel safety behavior was investigated in a virtual reality experiment. Forty-four participants completed three drives through a virtual road tunnel and were confronted with a traffic jam, no event, and an accident blocking the road. Participants were randomly assigned to a control group (no intervention), an informed group who read a brochure containing safety information prior to the tunnel drives, or an informed and instructed group who read the same brochure and received additional instructions during the emergency situation. Informed participants showed better and quicker safety behavior than the control group. Self-reports of anxiety were assessed three times during each drive. Anxiety was elevated during and after the emergency situation. The findings demonstrate problematic safety behavior in the control group and that knowledge of safety information fosters adequate behavior in tunnel emergencies. Enhanced anxiety ratings during the emergency situation indicate external validity of the virtual environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The competitive industrial context compels companies to speed-up every new product design. In order to keep designing products that meet the needs of the end user, a human centered concurrent product design methodology has been proposed. Its setting up is complicated by the difficulties of collaboration between experts involved inthe design process. In order to ease this collaboration, we propose the use of virtual reality as an intermediate design representation in the form of light and specialized immersive convergence support applications. In this paper, we present the As Soon As Possible (ASAP) methodology making possible the development of these tools while ensuring their usefulness and usability. The relevance oft his approach is validated by an industrial use case through the design of an ergonomic-style convergence support tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Telescopic systems of structural members with clearance are found in many applications, e.g., mobile cranes, rack feeders, fork lifters, stacker cranes (see Figure 1). Operating these machines, undesirable vibrations may reduce the performance and increase safety problems. Therefore, this contribution has the aim to reduce these harmful vibrations. For a better understanding, the dynamic behaviour of these constructions is analysed. The main interest is the overlapping area of each two sections of the above described systems (see markings in Figure 1) which is investigated by measurements and by computations. A test rig is constructed to determine the dynamic behaviour by measuring fundamental vibrations and higher frequent oscillations, damping coefficients, special appearances and more. For an appropriate physical model, the governing boundary value problem is derived by applying Hamilton’s principle and a classical discretisation procedure is used to generate a coupled system of nonlinear ordinary differential equations as the corresponding truncated mathematical model. On the basis of this model, a controller concept for preventing harmful vibrations is developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BrainMaps.org is an interactive high-resolution digital brain atlas and virtual microscope that is based on over 20 million megapixels of scanned images of serial sections of both primate and non-primate brains and that is integrated with a high-speed database for querying and retrieving data about brain structure and function over the internet. Complete brain datasets for various species, including Homo sapiens, Macaca mulatta, Chlorocebus aethiops, Felis catus, Mus musculus, Rattus norvegicus, and Tyto alba, are accessible online. The methods and tools we describe are useful for both research and teaching, and can be replicated by labs seeking to increase accessibility and sharing of neuroanatomical data. These tools offer the possibility of visualizing and exploring completely digitized sections of brains at a sub-neuronal level, and can facilitate large-scale connectional tracing, histochemical and stereological analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of virtual reality as tool in the area of spatial cognition raises the question of the quality of learning transfer from a virtual to a real environment. It is first necessary to determine with healthy subjects, the cognitive aids that improve the quality of transfer and the conditions required, especially since virtual reality can be used as effective tool in cognitive rehabilitation. The purpose of this study was to investigate the influence of the exploration mode of virtual environment (Passive vs. Active) according to Route complexity (Simple vs. Complex) on the quality of spatial knowledge transfer in three spatial tasks. Ninety subjects (45 men and 45 women) participated. Spatial learning was evaluated by Wayfinding, sketch-mapping and picture classification tasks in the context of the Bordeaux district. In the Wayfinding task, results indicated that active learning in a Virtual Environment (VE) increased the performances compared to the passive learning condition, irrespective of the route complexity factor. In the Sketch-mapping task, active learning in a VE helped the subjects to transfer their spatial knowledge from the VE to reality, but only when the route was complex. In the Picture classification task, active learning in a VE when the route was complex did not help the subjects to transfer their spatial knowledge. These results are explained in terms of knowledge levels and frame/strategy of reference [SW75, PL81, TH82].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For broadcasting purposes MIXED REALITY, the combination of real and virtual scene content, has become ubiquitous nowadays. Mixed Reality recording still requires expensive studio setups and is often limited to simple color keying. We present a system for Mixed Reality applications which uses depth keying and provides threedimensional mixing of real and artificial content. It features enhanced realism through automatic shadow computation which we consider a core issue to obtain realism and a convincing visual perception, besides the correct alignment of the two modalities and correct occlusion handling. Furthermore we present a possibility to support placement of virtual content in the scene. Core feature of our system is the incorporation of a TIME-OF-FLIGHT (TOF)-camera device. This device delivers real-time depth images of the environment at a reasonable resolution and quality. This camera is used to build a static environment model and it also allows correct handling of mutual occlusions between real and virtual content, shadow computation and enhanced content planning. The presented system is inexpensive, compact, mobile, flexible and provides convenient calibration procedures. Chroma-keying is replaced by depth-keying which is efficiently performed on the GRAPHICS PROCESSING UNIT (GPU) by the usage of an environment model and the current ToF-camera image. Automatic extraction and tracking of dynamic scene content is herewith performed and this information is used for planning and alignment of virtual content. An additional sustainable feature is that depth maps of the mixed content are available in real-time, which makes the approach suitable for future 3DTV productions. The presented paper gives an overview of the whole system approach including camera calibration, environment model generation, real-time keying and mixing of virtual and real content, shadowing for virtual content and dynamic object tracking for content planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-dimensional (3D) immersive virtual worlds have been touted as being capable of facilitating highly interactive, engaging, multimodal learning experiences. Much of the evidence gathered to support these claims has been anecdotal but the potential that these environments hold to solve traditional problems in online and technology-mediated education—primarily learner isolation and student disengagement—has resulted in considerable investments in virtual world platforms like Second Life, OpenSimulator, and Open Wonderland by both professors and institutions. To justify this ongoing and sustained investment, institutions and proponents of simulated learning environments must assemble a robust body of evidence that illustrates the most effective use of this powerful learning tool. In this authoritative collection, a team of international experts outline the emerging trends and developments in the use of 3D virtual worlds for teaching and learning. They explore aspects of learner interaction with virtual worlds, such as user wayfinding in Second Life, communication modes and perceived presence, and accessibility issues for elderly or disabled learners. They also examine advanced technologies that hold potential for the enhancement of learner immersion and discuss best practices in the design and implementation of virtual world-based learning interventions and tasks. By evaluating and documenting different methods, approaches, and strategies, the contributors to Learning in Virtual Worlds offer important information and insight to both scholars and practitioners in the field. AU Press is an open access publisher and the book is available for free in PDF format as well as for purchase on our website: http://bit.ly/1W4yTRA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The past few years, multimodal interaction has been gaining importance in virtual environments. Although multimodality renders interacting with an environment more natural and intuitive, the development cycle of such an application is often long and expensive. In our overall field of research, we investigate how modelbased design can facilitate the development process by designing environments through the use of highlevel diagrams. In this scope, we present ‘NiMMiT’, a graphical notation for expressing and evaluating multimodal user interaction; we elaborate on the NiMMiT primitives and demonstrate its use by means of a comprehensive example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simbrain is a visually-oriented framework for building and analyzing neural networks. It emphasizes the analysis of networks which control agents embedded in virtual environments, and visualization of the structures which occur in the high dimensional state spaces of these networks. The program was originally intended to facilitate analysis of representational processes in embodied agents, however it is also well suited to teaching neural networks concepts to a broader audience than is traditional for neural networks courses. Simbrain was used to teach a course at a new university, UC Merced, in its inaugural year. Experiences from the course and sample lessons are provided.