5 resultados para Convolutional neural network

em Digital Peer Publishing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simbrain is a visually-oriented framework for building and analyzing neural networks. It emphasizes the analysis of networks which control agents embedded in virtual environments, and visualization of the structures which occur in the high dimensional state spaces of these networks. The program was originally intended to facilitate analysis of representational processes in embodied agents, however it is also well suited to teaching neural networks concepts to a broader audience than is traditional for neural networks courses. Simbrain was used to teach a course at a new university, UC Merced, in its inaugural year. Experiences from the course and sample lessons are provided.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neural Networks as Cybernetic Systems is a textbox that combines classical systems theory with artificial neural network technology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neural Networks as Cybernetic Systems is a textbox that combines classical systems theory with artificial neural network technology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neural Networks as Cybernetic Systems is a textbox that combines classical systems theory with artificial neural network technology. This third edition essentially compares with the 2nd one, but has been improved by correction of errors and by a rearrangement and minor expansion of the sections referring to recurrent networks. These changes hopefully allow for an easier comprehension of the essential aspects of this important domain that has received growing attention during the last years.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

eural Networks as Cybernetic Systems is a textbox that combines classical systems theory with artificial neural network technology. This third edition essentially compares with the 2nd one, but has been improved by correction of errors and by a rearrangement and minor expansion of the sections referring to recurrent networks. These changes hopefully allow for an easier comprehension of the essential aspects of this important domain that has received growing attention during the last years.