3 resultados para Container Terminal and simulation

em Digital Peer Publishing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Master production schedule (MPS) plays an important role in an integrated production planning system. It converts the strategic planning defined in a production plan into the tactical operation execution. The MPS is also known as a tool for top management to control over manufacture resources and becomes input of the downstream planning levels such as material requirement planning (MRP) and capacity requirement planning (CRP). Hence, inappropriate decision on the MPS development may lead to infeasible execution, which ultimately causes poor delivery performance. One must ensure that the proposed MPS is valid and realistic for implementation before it is released to real manufacturing system. In practice, where production environment is stochastic in nature, the development of MPS is no longer simple task. The varying processing time, random event such as machine failure is just some of the underlying causes of uncertainty that may be hardly addressed at planning stage so that in the end the valid and realistic MPS is tough to be realized. The MPS creation problem becomes even more sophisticated as decision makers try to consider multi-objectives; minimizing inventory, maximizing customer satisfaction, and maximizing resource utilization. This study attempts to propose a methodology for MPS creation which is able to deal with those obstacles. This approach takes into account uncertainty and makes trade off among conflicting multi-objectives at the same time. It incorporates fuzzy multi-objective linear programming (FMOLP) and discrete event simulation (DES) for MPS development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years interactive media and tools, like scientific simulations and simulation environments or dynamic data visualizations, became established methods in the neural and cognitive sciences. Hence, university teachers of neural and cognitive sciences are faced with the challenge to integrate these media into the neuroscientific curriculum. Especially simulations and dynamic visualizations offer great opportunities for teachers and learners, since they are both illustrative and explorable. However, simulations bear instructional problems: they are abstract, demand some computer skills and conceptual knowledge about what simulations intend to explain. By following two central questions this article provides an overview on possible approaches to be applied in neuroscience education and opens perspectives for their curricular integration: (i) How can complex scientific media be transformed for educational use in an efficient and (for students on all levels) comprehensible manner and (ii) by what technical infrastructure can this transformation be supported? Exemplified by educational simulations for the neurosciences and their application in courses, answers to these questions are proposed a) by introducing a specific educational simulation approach for the neurosciences b) by introducing an e-learning environment for simulations, and c) by providing examples of curricular integration on different levels which might help academic teachers to integrate newly created or existing interactive educational resources in their courses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dieser Beitrag beschreibt Unsicherheiten in den Prozessen der Leercontainerlogistik und beinhaltet einen Systematisierungsansatz, der die Akteure bei der operativen Planung unterstützen soll. Weiterhin werden ausgewählte Modellierungskonzepte zur Berücksichtigung von Unsicherheiten vorgestellt und hinsichtlich ihrer Eignung zum Einsatz in mathematischen Optimierungsmodellen für das Leercontainermanagement analysiert. An einem konkreten Fallbeispiel wird der mögliche Einbezug der sogenannten Grey-Zahlen verdeutlicht.