3 resultados para Consensus building process

em Digital Peer Publishing


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Argon infiltration is a well-known problem of hot isostatic pressed components. Thus, the argon content is one quality attribute which is measured after a hot isostatic pressing (HIP) process. Since the Selective Laser Melting (SLM) process takes place under an inert argon atmosphere; it is imaginable that argon is entrapped in the component after SLM processing. Despite using optimized process parameters, defects like pores and shrink holes cannot be completely avoided. Especially, pores could be filled with process gas during the building process. Argon filled pores would clearly affect the mechanical properties. The present paper takes a closer look at the porosity in Inconel 718 samples, which were generated by means of SLM. Furthermore, the argon content of the powder feedstock, of samples made by means of SLM, of samples which were hot isostatic pressed after the SLM process, and of conventionally manufactured samples were measured and compared. The results showed an increased argon content in the Inconel 718 samples after SLM processing compared to conventional manufactured samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Additive, pulverbasierte Schichtbauverfahren, wie das Selektive Masken- oder La-sersintern, ermöglichen die Fertigung von komplexen Bauteilen ohne Werkzeug und Form. Aufgrund der hohen, verarbeitungsbedingten Bauraumtemperaturen kommt es während der Verarbeitung zu physikalischem und thermisch-oxidativem Abbau der eingesetzten Kunststoffpulver. Das im Bauraum nicht aufgeschmolzene Material, der so genannte Partcake, kann nach dem Bauprozess vom fertigen Bauteil entfernt und für weitere Bauprozesse verwendet werden. Zur Realisierung reproduzierbarer Bau-teileigenschaften ist jedoch eine Aufbereitung („Refreshen“) des Partcake-Pulvers notwendig. Im Rahmen des Beitrags werden Erkenntnisse zum Alterungsverhalten von Kunst-stoffpulvern vorgestellt. In einem Modellversuch wurde der Verarbeitungsprozess für PA12-Pulver nachgestellt und somit verschiedene Alterungsstufen generiert. Beson-deres Augenmerk wurde auf den Einfluss einer Materialvorbehandlung gelegt. Die gealterten Pulver wurden physikalisch und thermoanalytisch hinsichtlich ihrer verar-beitungsrelevanten Materialeigenschaften untersucht.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile learning, in the past defined as learning with mobile devices, now refers to any type of learning-on-the-go or learning that takes advantage of mobile technologies. This new definition shifted its focus from the mobility of technology to the mobility of the learner (O'Malley and Stanton 2002; Sharples, Arnedillo-Sanchez et al. 2009). Placing emphasis on the mobile learner’s perspective requires studying “how the mobility of learners augmented by personal and public technology can contribute to the process of gaining new knowledge, skills, and experience” (Sharples, Arnedillo-Sanchez et al. 2009). The demands of an increasingly knowledge based society and the advances in mobile phone technology are combining to spur the growth of mobile learning. Around the world, mobile learning is predicted to be the future of online learning, and is slowly entering the mainstream education. However, for mobile learning to attain its full potential, it is essential to develop more advanced technologies that are tailored to the needs of this new learning environment. A research field that allows putting the development of such technologies onto a solid basis is user experience design, which addresses how to improve usability and therefore user acceptance of a system. Although there is no consensus definition of user experience, simply stated it focuses on how a person feels about using a product, system or service. It is generally agreed that user experience adds subjective attributes and social aspects to a space that has previously concerned itself mainly with ease-of-use. In addition, it can include users’ perceptions of usability and system efficiency. Recent advances in mobile and ubiquitous computing technologies further underline the importance of human-computer interaction and user experience (feelings, motivations, and values) with a system. Today, there are plenty of reports on the limitations of mobile technologies for learning (e.g., small screen size, slow connection), but there is a lack of research on user experience with mobile technologies. This dissertation will fill in this gap by a new approach in building a user experience-based mobile learning environment. The optimized user experience we suggest integrates three priorities, namely a) content, by improving the quality of delivered learning materials, b) the teaching and learning process, by enabling live and synchronous learning, and c) the learners themselves, by enabling a timely detection of their emotional state during mobile learning. In detail, the contributions of this thesis are as follows: • A video codec optimized for screencast videos which achieves an unprecedented compression rate while maintaining a very high video quality, and a novel UI layout for video lectures, which together enable truly mobile access to live lectures. • A new approach in HTTP-based multimedia delivery that exploits the characteristics of live lectures in a mobile context and enables a significantly improved user experience for mobile live lectures. • A non-invasive affective learning model based on multi-modal emotion detection with very high recognition rates, which enables real-time emotion detection and subsequent adaption of the learning environment on mobile devices. The technology resulting from the research presented in this thesis is in daily use at the School of Continuing Education of Shanghai Jiaotong University (SOCE), a blended-learning institution with 35.000 students.