2 resultados para Compression Metric
em Digital Peer Publishing
Resumo:
This paper proposes a new compression algorithm for dynamic 3d meshes. In such a sequence of meshes, neighboring vertices have a strong tendency to behave similarly and the degree of dependencies between their locations in two successive frames is very large which can be efficiently exploited using a combination of Predictive and DCT coders (PDCT). Our strategy gathers mesh vertices of similar motions into clusters, establish a local coordinate frame (LCF) for each cluster and encodes frame by frame and each cluster separately. The vertices of each cluster have small variation over a time relative to the LCF. Therefore, the location of each new vertex is well predicted from its location in the previous frame relative to the LCF of its cluster. The difference between the original and the predicted local coordinates are then transformed into frequency domain using DCT. The resulting DCT coefficients are quantized and compressed with entropy coding. The original sequence of meshes can be reconstructed from only a few non-zero DCT coefficients without significant loss in visual quality. Experimental results show that our strategy outperforms or comes close to other coders.
Resumo:
Geometrical dependencies are being researched for analytical representation of the probability density function (pdf) for the travel time between a random, and a known or another random point in Tchebyshev’s metric. In the most popular case - a rectangular area of service - the pdf of this random variable depends directly on the position of the server. Two approaches have been introduced for the exact analytical calculation of the pdf: Ad-hoc approach – useful for a ‘manual’ solving of a specific case; by superposition – an algorithmic approach for the general case. The main concept of each approach is explained, and a short comparison is done to prove the faithfulness.