1 resultado para California. Dept. of Industrial Relations
em Digital Peer Publishing
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (3)
- Academic Research Repository at Institute of Developing Economies (7)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (12)
- Archive of European Integration (156)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (29)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biodiversity Heritage Library, United States (36)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (24)
- Brock University, Canada (9)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (9)
- CentAUR: Central Archive University of Reading - UK (10)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (3)
- Cochin University of Science & Technology (CUSAT), India (10)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (26)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- Duke University (1)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (2)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (1)
- Portal de Revistas Científicas Complutenses - Espanha (6)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (45)
- Queensland University of Technology - ePrints Archive (51)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (6)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- South Carolina State Documents Depository (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (2)
- Universidade Complutense de Madrid (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (8)
- University of Connecticut - USA (2)
- University of Michigan (359)
- University of Queensland eSpace - Australia (13)
- University of Washington (2)
Resumo:
In this paper we present a model-based approach for real-time camera pose estimation in industrial scenarios. The line model which is used for tracking is generated by rendering a polygonal model and extracting contours out of the rendered scene. By un-projecting a point on the contour with the depth value stored in the z-buffer, the 3D coordinates of the contour can be calculated. For establishing 2D/3D correspondences the 3D control points on the contour are projected into the image and a perpendicular search for gradient maxima for every point on the contour is performed. Multiple hypotheses of 2D image points corresponding to a 3D control point make the pose estimation robust against ambiguous edges in the image.