1 resultado para BEES
em Digital Peer Publishing
Filtro por publicador
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (46)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (13)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (43)
- Brock University, Canada (12)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Cambridge University Engineering Department Publications Database (2)
- CentAUR: Central Archive University of Reading - UK (59)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Digital Commons at Florida International University (5)
- Digital Peer Publishing (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (6)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (2)
- Glasgow Theses Service (1)
- Helda - Digital Repository of University of Helsinki (2)
- Helvia: Repositorio Institucional de la Universidad de Córdoba (1)
- Indian Institute of Science - Bangalore - Índia (11)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (7)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (32)
- Queensland University of Technology - ePrints Archive (13)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (305)
- Research Open Access Repository of the University of East London. (1)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (2)
- Universidade Complutense de Madrid (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (7)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universidade Metodista de São Paulo (3)
- Universidade Técnica de Lisboa (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (1)
- Université Laval Mémoires et thèses électroniques (2)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (286)
- University of Queensland eSpace - Australia (5)
- University of Southampton, United Kingdom (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Learning is based on rules that can be elucidated by behavioural experiments. This article focuses on virtual experiments, in which non-associative learning (habituation, sensitization) and principles of associative learning (contiguity, inhibitory learning, generalization, overshadowing, positive and negative patterning) can be examined using 'virtual' honey bees in PER (Proboscis Reaction Extension) conditioning experiments. Users can develop experimental designs, simulate and document the experiments and find explanations and suggestions for the analysis of the learning experiments. The virtual experiments are based on video sequences and data from actual learning experiments. The bees' responses are determined by probability-based learning profiles.