1 resultado para ACCURATE
em Digital Peer Publishing
Filtro por publicador
- Aberdeen University (2)
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (3)
- Aston University Research Archive (10)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (8)
- Biblioteca Digital Loyola - Universidad de Deusto (1)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (41)
- Boston University Digital Common (1)
- Brock University, Canada (6)
- Bucknell University Digital Commons - Pensilvania - USA (9)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (27)
- CentAUR: Central Archive University of Reading - UK (19)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (21)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (4)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (3)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Greenwich Academic Literature Archive - UK (2)
- Harvard University (2)
- Helda - Digital Repository of University of Helsinki (1)
- Indian Institute of Science - Bangalore - Índia (35)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (1)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (27)
- Queensland University of Technology - ePrints Archive (440)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (8)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (3)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (4)
- Universidad Politécnica de Madrid (16)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (3)
- Université de Montréal (1)
- Université de Montréal, Canada (1)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (196)
- University of Queensland eSpace - Australia (15)
- University of Washington (2)
- USA Library of Congress (2)
- WestminsterResearch - UK (1)
Resumo:
“Dual contouring” approaches provide an alternative to standard Marching Cubes (MC) method to extract and approximate an isosurface from trivariate data given on a volumetric mesh. These dual approaches solve some of the problems encountered by the MC methods. We present a simple method based on the MC method and the ray intersection technique to compute isosurface points in the cell interior. One of the advantages of our method is that it does not require us to use Hermite interpolation scheme, unlike other dual contouring methods. We perform a complete analysis of all possible configurations to generate a look-up table for all configurations. We use the look-up table to optimize the ray-intersection method to obtain minimum number of points necessarily sufficient for defining topologically correct isosurfaces in all possible configurations. Isosurface points are connected using a simple strategy.