3 resultados para 3D object recognition

em Digital Peer Publishing


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the problem of approximating the 3D scan of a real object through an affine combination of examples. Common approaches depend either on the explicit estimation of point-to-point correspondences or on 2-dimensional projections of the target mesh; both present drawbacks. We follow an approach similar to [IF03] by representing the target via an implicit function, whose values at the vertices of the approximation are used to define a robust cost function. The problem is approached in two steps, by approximating first a coarse implicit representation of the whole target, and then finer, local ones; the local approximations are then merged together with a Poisson-based method. We report the results of applying our method on a subset of 3D scans from the Face Recognition Grand Challenge v.1.0.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Um mit den immer kürzer werdenden Produkteinführungszeiten Schritt halten zu können, die der harte Wettbewerb heute vorgibt, setzt die produzierende Industrie mehr und mehr auf das 3D-Drucken von Prototypen. Mit dieser Produktionsmethode lassen sich technische Probleme schon in der frühen Entwicklungsphase lösen. Dies spart Kosten und beschleunigt die Entwicklungsschritte. Die innovative PolyJetTM-Technologie von Objet setzt neue Maßstäbe im 3D-Drucken. 
Die Besonderheit: Modelle aus hauchdünnen Materialschichten. So können mit der 
PolyJetTM-Technologie detailgetreue Modelle extrem schnell, einfach und sauber realisiert werden – und das mit hervorragender Oberflächenqualität

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tracking user’s visual attention is a fundamental aspect in novel human-computer interaction paradigms found in Virtual Reality. For example, multimodal interfaces or dialogue-based communications with virtual and real agents greatly benefit from the analysis of the user’s visual attention as a vital source for deictic references or turn-taking signals. Current approaches to determine visual attention rely primarily on monocular eye trackers. Hence they are restricted to the interpretation of two-dimensional fixations relative to a defined area of projection. The study presented in this article compares precision, accuracy and application performance of two binocular eye tracking devices. Two algorithms are compared which derive depth information as required for visual attention-based 3D interfaces. This information is further applied to an improved VR selection task in which a binocular eye tracker and an adaptive neural network algorithm is used during the disambiguation of partly occluded objects.