7 resultados para 3D computer animation
em Digital Peer Publishing
Resumo:
Physically-based modeling for computer animation allows to produce more realistic motions in less time without requiring the expertise of skilled animators. But, a computer animation is not only a numerical simulation based on classical mechanics since it follows a precise story-line. One common way to define aims in an animation is to add geometric constraints. There are several methods to manage these constraints within a physically-based framework. In this paper, we present an algorithm for constraints handling based on Lagrange multipliers. After few remarks on the equations of motion that we use, we present a first algorithm proposed by Platt. We show with a simple example that this method is not reliable. Our contribution consists in improving this algorithm to provide an efficient and robust method to handle simultaneous active constraints.
Resumo:
We consider the problem of approximating the 3D scan of a real object through an affine combination of examples. Common approaches depend either on the explicit estimation of point-to-point correspondences or on 2-dimensional projections of the target mesh; both present drawbacks. We follow an approach similar to [IF03] by representing the target via an implicit function, whose values at the vertices of the approximation are used to define a robust cost function. The problem is approached in two steps, by approximating first a coarse implicit representation of the whole target, and then finer, local ones; the local approximations are then merged together with a Poisson-based method. We report the results of applying our method on a subset of 3D scans from the Face Recognition Grand Challenge v.1.0.
Resumo:
This paper proposes a new compression algorithm for dynamic 3d meshes. In such a sequence of meshes, neighboring vertices have a strong tendency to behave similarly and the degree of dependencies between their locations in two successive frames is very large which can be efficiently exploited using a combination of Predictive and DCT coders (PDCT). Our strategy gathers mesh vertices of similar motions into clusters, establish a local coordinate frame (LCF) for each cluster and encodes frame by frame and each cluster separately. The vertices of each cluster have small variation over a time relative to the LCF. Therefore, the location of each new vertex is well predicted from its location in the previous frame relative to the LCF of its cluster. The difference between the original and the predicted local coordinates are then transformed into frequency domain using DCT. The resulting DCT coefficients are quantized and compressed with entropy coding. The original sequence of meshes can be reconstructed from only a few non-zero DCT coefficients without significant loss in visual quality. Experimental results show that our strategy outperforms or comes close to other coders.
Resumo:
Tracking user’s visual attention is a fundamental aspect in novel human-computer interaction paradigms found in Virtual Reality. For example, multimodal interfaces or dialogue-based communications with virtual and real agents greatly benefit from the analysis of the user’s visual attention as a vital source for deictic references or turn-taking signals. Current approaches to determine visual attention rely primarily on monocular eye trackers. Hence they are restricted to the interpretation of two-dimensional fixations relative to a defined area of projection. The study presented in this article compares precision, accuracy and application performance of two binocular eye tracking devices. Two algorithms are compared which derive depth information as required for visual attention-based 3D interfaces. This information is further applied to an improved VR selection task in which a binocular eye tracker and an adaptive neural network algorithm is used during the disambiguation of partly occluded objects.
Resumo:
Recently, stable markerless 6 DOF video based handtracking devices became available. These devices simultaneously track the positions and orientations of both user hands in different postures with at least 25 frames per second. Such hand-tracking allows for using the human hands as natural input devices. However, the absence of physical buttons for performing click actions and state changes poses severe challenges in designing an efficient and easy to use 3D interface on top of such a device. In particular, for coupling and decoupling a virtual object’s movements to the user’s hand (i.e. grabbing and releasing) a solution has to be found. In this paper, we introduce a novel technique for efficient two-handed grabbing and releasing objects and intuitively manipulating them in the virtual space. This technique is integrated in a novel 3D interface for virtual manipulations. A user experiment shows the superior applicability of this new technique. Last but not least, we describe how this technique can be exploited in practice to improve interaction by integrating it with RTT DeltaGen, a professional CAD/CAS visualization and editing tool.
Resumo:
Das Additive Manufacturing gewinnt im Bereich der Medizintechnik zur Herstellung von Prototypen bis hin zu Endprodukten zunehmend an Bedeutung. Ein großes Hemmnis stellen allerdings die relativ hohen Fertigungskosten dar. Hier bietet der verstärkte Einsatz der 3D-Drucktechnologie (3D Printing) ein erhebliches Potential zur Reduktion der Kosten. Aus dieser Motivation heraus wurde ein 3D-Druckverfahren zur Herstellung biokompatibler, sterilisierbarer Kunststoffmodelle entwickelt. Beim 3D-Druck-Verfahren handelt es sich um einen pulverbasierten Prozess zur schichtweisen Herstellung von Modellen direkt aus Computerdaten. Dabei werden dünne Schichten eines Pulvers auf eine Grundplatte aufgebracht, die dann durch gezielte Binderzugabe entsprechend des aktuellen Bauteilquerschnitts verfestigt werden. Ausgangsmaterial für diesen Prozess ist ein Granulatgemisch auf Basis von PMMA (Polymethylmethacrylat). Als Binderflüssigkeit wird ein Lösungsmittel eingesetzt. Die 3D gedruckten Modelle werden nach einer entsprechenden Trocknungszeit im Pulverbett entpackt und warmgelagert, um das Abdampfen des Lösungsmittels zu beschleunigen. Der Nachweis der Biokompatibilität der hergestellten Modelle erfolgte durch einen Test nach DIN EN ISO 10993-5. In Kooperation mit Anwendern wurden verschiedene Anwendungsbeispiele wie Bohrschablonen, Otoplastiken, Gebissmodelle und Modelle für die präoperative Planung realisiert und charakterisiert.
Resumo:
Durch die von Rapid Prototyping gebotenen Möglichkeiten können computergestützte 3D Operationsplanungen präzise in der Operation umgesetzt werden. An der Universitätsklinik Balgrist wurden in den letzten 3 Jahren nahezu 100 Patienten erfolgreich behandelt, deren Operation in 3D geplant und mit patienten-spezifischen Schablonen umgesetzt wurde. Wir beschreiben die Genauigkeit dieser Methode und berichten über die hierbei gesammelten Erfahrungen. Aufgrund der Flexibilität der Rapid Prototyping Technologie, gibt es nicht immer nur einen Weg wie eine 3D geplante Operation umgesetzt werden kann. Wir zeigen daher anhand von Fallbeispielen unterschiedliche Strategien auf und beschreiben deren Vor- und Nachteile. Ausserdem präsentieren wir die Weiterentwicklung der Methode zur Anwendung an kleinerer Anatomie wie Knochen des Handgelenkes oder der Finger.