2 resultados para anti-infective agents

em Digital Knowledge Repository of Central Drug Research Institute


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ureides are compounds, which essentially incorporate urea as a substructural component either in open or cyclic form. Ureido derivatives are one of the oldest classes of bioactives, widely used as antiinfective agents. Several of these compounds, including aminoquinuride, aminocarbalide, imidurea, cloflucarban, nitrofurazone, urosulfan, viomycin are used in clinical situations. One of the ureides, the triclocarban is compulsorily used as antibacterial agent in cleansing and disinfecting solutions in hospital, household, cosmetics, toys, textile and plastics. It disables the activity of ENR, an enzyme vital for building the cell wall of the bacteria and fungus. Besides, the ureido-penicillins in clinical use there have been several ureido-lactam derivatives which have been reported to exhibit significant antibacterial activity. A urea containing dipeptide TAN-1057A isolated from Flexibacter spp. has potent bioactivity against MRSA. The metal complexes of sulphonyl ureido derivatives are effective antifungal agents by inhibiting the activity of phosphomannose isomerase, a key enzyme in the biosynthesis of yeast cell walls. There have been number of ureides including the cyclic ureas which are potent HIV protease inhibitors and display significant anti-HIV activity. The urea derivative, merimepodip that has been derived using structure based design, is potent inhibitor of IMPDH and is active against Hepatitis-C infection. This review will primarily focus on the significant work reported for this class of compounds including design, synthesis and biological activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

DNA ligases are important enzymes which catalyze the joining of nicks between adjacent bases of double-stranded DNA. NAD1-dependent DNA ligases (LigA) are essential in bacteria and are absent in humans. They have therefore been identified as novel, validated and attractive drug targets. Using virtual screening against an in-house database of compounds and our recently determined crystal structure of the NAD1 binding domain of the Mycobacterium tuberculosis LigA, we have identified N1, Nn-bis-(5-deoxy-a-D-xylofuranosylated) diamines as a novel class of inhibitors for this enzyme. Assays involving M.tuberculosis LigA, T4 ligase and human DNA ligase I show that these compounds specifically inhibit LigA from M.tuberculosis. In vitro kinetic and inhibition assays demonstrate that the compounds compete with NAD1 for binding and inhibit enzyme activity with IC50 values in the mM range. Docking studies rationalize the observed specificities and show that among several glycofuranosylated diamines, bis xylofuranosylated diamines with aminoalkyl and 1, 3-phenylene carbamoyl spacers mimic the binding modes of NAD1 with the enzyme. Assays involving LigA-deficient bacterial strains show that in vivo inhibition of ligase by the compounds causes the observed antibacterial activities. They also demonstrate that the compounds exhibit in vivo specificity for LigA over ATPdependent ligase. This class of inhibitors holds out the promise of rational development of new anti-tubercular agents.