2 resultados para TRANSITION-METAL SALTS
em Digital Knowledge Repository of Central Drug Research Institute
Resumo:
A general, two-step highly efficient synthesis of 1,2-diaryl-, 1,2,3-triaryl- and 1,2,3,4-tetraarylbenzenes from simple stitching of alpha-oxo-ketene-S,S-acetals and active methylene compounds via a ‘lactone intermediate’ is described. This procedure offers easy access to highly functionalized arylated-benzenes containing sterically demanding groups in good to excellent yields. The novelty of the procedure lies in the fabrication of aromatic compounds with desired conformational flexibility along the molecular axis in a transition metal-free environment through easily accessible precursors. The crystal analysis of these arylated-benzene scaffolds showed that the peripheral aryl rings are arranged in propeller-like fashion with respect to the central benzene rings. Examination of the crystal packing in the structure of a 1,2,3,4-tetraarylbenzene 12c revealed a “N…pi interaction” between molecules related by a two-fold screw axis running in a direction. It is interesting that the repeat of the array of N…pi interaction around the axis of the 1,2,3,4-tetraarylbenzene 12c enforces the molecules in a helical pattern.
Resumo:
A one-pot, general synthesis of highly functionalized quateraryls through carbanion-induced, base-catalyzed ring transformation of 5,6-diaryl-2H-pyran-2-ones and core-substituted phenylacetones is delineated. These conversions were found to give diversely functionalized benzenes bearing peripheral aryl rings, some of which possess inherent atropisomerism. Exemplarily for one of the quateraryls, the optical resolution of the respective atropo-enantiomers by HPLC on a chiral phase and the assignment of their absolute axial configurations succeeded by LC-CD coupling in combination with semiempirical CNDO/S and TDDFT CD calculations. This synthetic approach offers – in a transition metal-free environment – high flexibility in the construction of quateraryls with the desired conformational freedom along the molecular axis, which may help in exploring and developing new potential ligands for asymmetric synthesis.