1 resultado para Large Data Sets
em Digital Knowledge Repository of Central Drug Research Institute
Filtro por publicador
- JISC Information Environment Repository (1)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (4)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (13)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (6)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (17)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (8)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (40)
- Boston University Digital Common (4)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (5)
- CentAUR: Central Archive University of Reading - UK (85)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (4)
- Cochin University of Science & Technology (CUSAT), India (6)
- Collection Of Biostatistics Research Archive (6)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (5)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (7)
- DigitalCommons@University of Nebraska - Lincoln (2)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (6)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (15)
- Indian Institute of Science - Bangalore - Índia (44)
- Instituto Politécnico do Porto, Portugal (1)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (2)
- Open University Netherlands (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- Publishing Network for Geoscientific & Environmental Data (345)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (30)
- Queensland University of Technology - ePrints Archive (100)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (21)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (7)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (8)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (6)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (2)
- University of Michigan (4)
- University of Queensland eSpace - Australia (5)
- University of Southampton, United Kingdom (2)
- University of Washington (3)
- WestminsterResearch - UK (2)
Resumo:
A combinatorial protocol (CP) is introduced here to interface it with the multiple linear regression (MLR) for variable selection. The efficiency of CP-MLR is primarily based on the restriction of entry of correlated variables to the model development stage. It has been used for the analysis of Selwood et al data set [16], and the obtained models are compared with those reported from GFA [8] and MUSEUM [9] approaches. For this data set CP-MLR could identify three highly independent models (27, 28 and 31) with Q2 value in the range of 0.632-0.518. Also, these models are divergent and unique. Even though, the present study does not share any models with GFA [8], and MUSEUM [9] results, there are several descriptors common to all these studies, including the present one. Also a simulation is carried out on the same data set to explain the model formation in CP-MLR. The results demonstrate that the proposed method should be able to offer solutions to data sets with 50 to 60 descriptors in reasonable time frame. By carefully selecting the inter-parameter correlation cutoff values in CP-MLR one can identify divergent models and handle data sets larger than the present one without involving excessive computer time.