5 resultados para Benzyl diamines

em Digital Knowledge Repository of Central Drug Research Institute


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The applications of the primary allyl amines afforded by the acetyl derivative of Baylis-Hillman adducts of acrylate for the synthesis of heterocycles using robust reactions are described. In the first strategy a one-pot synthesis of 5-benzyl-4(3H)-pyrimidinones have been achieved via N-formylation of the amines in the presence of neat formamide followed by ammonium formate-mediated cyclization. These pyrimidinones have been demonstrated to be excellent precursor to the 4-pyridinamine derivatives. In the second strategy the synthesis of 2-benzylidene-2,3-dihydro-pyrrolizin-1-ones have been accomplished via treatment of allyl amine with dimethoxyfuran followed by saponification and PPA-mediated intramolecular cyclization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A convenient synthesis of new 5,6,7 ,8-tetrahydro-imidazo[ 1,2-a]pyrimidin-2-ones and 3,4,6,7 ,8,9-hexahydro-pyrimido[1 ,2a]pyrimidin-2- ones from the Baylis-Hillman adducts of acrylonitrile and their derivatives is described. A common strategy employed to achieve the syntheses of title compounds involved generation of diamines from different Baylis-Hillman derivatives followed by treatment with cyanogen bromide at reflux temperature to trigger a double intramolecular cyclization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA ligases are important enzymes which catalyze the joining of nicks between adjacent bases of double-stranded DNA. NAD1-dependent DNA ligases (LigA) are essential in bacteria and are absent in humans. They have therefore been identified as novel, validated and attractive drug targets. Using virtual screening against an in-house database of compounds and our recently determined crystal structure of the NAD1 binding domain of the Mycobacterium tuberculosis LigA, we have identified N1, Nn-bis-(5-deoxy-a-D-xylofuranosylated) diamines as a novel class of inhibitors for this enzyme. Assays involving M.tuberculosis LigA, T4 ligase and human DNA ligase I show that these compounds specifically inhibit LigA from M.tuberculosis. In vitro kinetic and inhibition assays demonstrate that the compounds compete with NAD1 for binding and inhibit enzyme activity with IC50 values in the mM range. Docking studies rationalize the observed specificities and show that among several glycofuranosylated diamines, bis xylofuranosylated diamines with aminoalkyl and 1, 3-phenylene carbamoyl spacers mimic the binding modes of NAD1 with the enzyme. Assays involving LigA-deficient bacterial strains show that in vivo inhibition of ligase by the compounds causes the observed antibacterial activities. They also demonstrate that the compounds exhibit in vivo specificity for LigA over ATPdependent ligase. This class of inhibitors holds out the promise of rational development of new anti-tubercular agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The novel synthesis of a new isoxazole-annulated heterocycle namely 5,8-dihydro-isoxazolo[4,5-c]azepin-4-one described herein is based on the reaction of benzyl amine with acetates of Baylis-Hillman adducts generated from 3-aryl-5-formyl-isoxazole-4-carboxylate

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transbilayer aminophospholipid distributions in small unilamellar vesicles comprising of phosphatidylethanolamine or its analogs (bearing modifications in the polar headgroup) and egg hosphatidylcholine were ascertained using trinitrobenzenesulfonic acid as external membrane probe. These vesicles, containing 10-30 mol% phosphatidylethanolamine or its analogs, were formed by sonication and fractionated by centrifugation. Phosphatidylethanolamine at low concentrations (10 mol%) preferentially localized in the outer monolayer. This preference appeared to be reversed at higher phosphatidylethanolamine concentrations (30 mol%). Unlike this finding, phosphatidylethanolamine bearing ethyl, phenyl and benzyl substituents at the carbon atom adjacent to the amino group distributed mainly in the outer surface irrespective of their concentrations. Similar results were obtained when the phosphate and amino groups were separated by three methylene residues. These observations suggest that the effective polar headgroup volume and/or hydrogen-bonding capacity of phospholipids are the important factors that determine their distribution in small unilamellar vesicles.