2 resultados para Aniline oligomers

em Digital Knowledge Repository of Central Drug Research Institute


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rv3291c gene from Mycobacterium tuberculosis codes for a transcriptional regulator belonging to the (leucine responsive regulatory protein/regulator of asparigine synthase C gene product) Lrp/AsnC-family. We have identified a novel effectorbinding site from crystal structures of the apo protein, complexes with a variety of amino acid effectors, X-ray based ligand screening and qualitative fluorescence spectroscopy experiments. The new effector site is in addition to the structural characterization of another distinct site in the protein conserved in the related AsnC-family of regulators. The structures reveal that the ligandbinding loops of two crystallographically ndependent subunits adopt different conformations to generate two distinct effector-binding sites. A change in the conformation of the binding site loop 100–106 in the B subunit is apparently necessary for octameric association and also allows the loop to interact with a bound ligand in the newly identified effector-binding site. There are four sites of each kind in the octamer and the protein preferentially binds to aromatic amino acids. While amino acids like Phe, Tyr and Trp exhibit binding to only one site, His exhibits binding to both sites. Binding of Phe is accompanied by a conformational change of 3.7A ° in the 75–83 loop, which is advantageously positioned to control formation of higher oligomers. Taken together, the present studies suggest an elegant control mechanism for global transcription regulation involving binding of ligands to the two sites, individually or collectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two series of closely related antimalarial agents, 7-chloro-4-(3’,5’-disubstitutedanilino) quinolines, have been analyzed using Combinatorial Protocol in Multiple Linear Regression (CP-MLR) for the structure-activity relations with more than 450 topological descriptors for each set. The study clearly suggested that 3’- and 5’- substituents of the anilino moiety map different domains in the activity space. While one domain favors the compact structural frames having aromatic, heterocyclic ring(s) substituted with closely spaced F, NO2 and O functional groups, the other prefers structural frames enriched with unsaturation, loops, branches, electronic content and devoid of carbonyl function. Also, this study gives an indication in favour of the electron rich centres in the aniline substituent groups for better antimalarial activity; an observation in line with several of the previous reports too. The models developed and the participating descriptors suggest that the substituent groups of the 4-anilino moiety of the 4-(3’, 5’-disubstitutedanilino)quinolines hold scope for further modification in the optimisation of the antimalarial activity.