2 resultados para electrical impedance spectroscopy
em Digital Commons - Montana Tech
Resumo:
The authors describe the design, fabrication, and testing of a passive wireless sensor platform utilizing low-cost commercial surface acoustic wave filters and sensors. Polyimide and polyethylene terephthalate sheets are used as substrates to create a flexible sensor tag that can be applied to curved surfaces. A microfabricated antenna is integrated on the substrate in order to create a compact form factor. The sensor tags are fabricated using 315 MHz surface acoustic wave filters and photodiodes and tested with the aid of a fiber-coupled tungsten lamp. Microwave energy transmitted from a network analyzer is used to interrogate the sensor tag. Due to an electrical impedance mismatch at the SAW filter and sensor, energy is reflected at the sensor load and reradiated from the integrated antenna. By selecting sensors that change electrical impedance based on environmental conditions, the sensor state can be inferred through measurement of the reflected energy profile. Testing has shown that a calibrated system utilizing this type of sensor tag can detect distinct light levels wireless and passively. The authors also demonstrate simultaneous operation of two tags with different center passbands that detects light. Ranging tests show that the sensor tags can operate at a distance of at least 3.6 m.
Resumo:
Solid oxide fuel cells (SOFCs) are promising devices for stationary and portable power and heat generation, because they can use complex fuels such as hydro-carbons, CO, and alcohols. Extreme, non-equilibrium conditions and high tem-peratures (≥ 700 ˚C) required for SOFC operation hamper efforts to understand the mechanisms of component degradation in SOFCs. This talk focuses on new insights into SOFC chemistry and the conversion of carbon-containing fuels (both hydrocarbons and oxygenated) into electricity, carbon dioxide and water, gleaned from a combination of techniques including electrochemical impedance spectroscopy, voltammetry, and vibrational Raman scattering.