2 resultados para Savannah River (Ga. and S.C.)

em Digital Commons - Montana Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In writing this report, two objects were kept in mind, (1) to explain, if possible, the origin of the chromite deposits found in Sweetgrass and Stillwater Counties, and (2) to bring up to date all information on these deposits which had thus far been available. The work done consisted of study of the rocks and ores of the area under the microscope, both as thin sections and as polished sections, practically all of which was done at the Montana State School of Mines, during the school year of 1928 - 1929. The rock specimens and much information as to their locations and probable compositions were obtained from Mr. P. F. Minister, of the East Butte Copper Company. United States Geological Survey Bulletin 725-A, Deposits of Chromite in California, Oregon, Washington, and Montana, and the unpublished report on the Chromite deposits of the Boulder River, prepared by Prof. C. H. Clapp of the University of Montana, were frequently referred to and considerable material was drawn from them. The map of the Boulder River area is from Clapp's report.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental samples were collected at three surface water sites between 5/21/2011 and 11/21/2014 along the Upper Boulder River near Boulder Montana. The sites were located at Bernice (within the mountain block), near the High Ore drainage (near the mountain block/basin transition), and at the USGS Gauging Station near Boulder, Montana (within the basin). The parameters measured in the field were SC, temperature, and alkalinity with occasional pH measurements. We collected samples for anions, cations, and stable isotopes in the catchment. We identified endmembers by sampling snow and groundwater and determined from available data an approximate endmember for rain, snow, and groundwater. We used temporal and spatial variations of water chemistry and isotopes to generate an endmember mixing model. Groundwater was found to always be an important contributor to river flow and could increase by nearly an order of magnitude during large snowmelt events. This resulted in groundwater comprising ~20% of total river flow during snowmelt at all sites. At peak snowmelt we observed that near surface water contributions to the river were from a mixture of rain and snow. Soil water, though not sampled, was hypothesized to be an important part of the hydrologic story. If so, the endmember contributions determined in this study may be different. Groundwater may have the highest variation depending on water chemistry of shallow soil water.