2 resultados para PM2. 5
em Digital Commons - Montana Tech
Resumo:
Wood burning for residential heating is prevalent in the Rocky Mountain regions of the United States. Studies have shown that wood stoves can be a significant source of PM2.5 within homes. In this study, the effectiveness of an electrostatic filter portable air purifier was evaluated (1) in a home where a wood stove was the sole heat source and (2) in a home where a wood stove was used as a supplemental heat source. Particle count concentrations in six particle sizes and particle mass concentrations in two particle sizes weremeasured for ten 12-hour purifier on and ten purifier off trials in each home. Particle count concentrations were reduced by 61–85 percent. Similar reductions were observed in particle mass concentrations. These findings, although limited to one season, suggest that a portable air purifier may effectively reduce indoor particulate matter concentrations associated with wood combustion during home heating.
Resumo:
A model was developed to assess the potential change in PM2.5 concentrations in Butte, Montana over the course of the 21st century as the result of climate change and changes in emissions. The EPA AERMOD regulatory model was run using NARCCAP climate data for the years of 2040, 2050, 2060 and 2070, and the results were compared to the NAAQS to determine if there is the potential for future impacts to human health. This model predicted an average annual concentration of 15.84 µg/m3 in the year 2050, which would exceed the primary NAAQS of 12 µg/m3 and is a large increase over the average concentration from 2010 – 2012 of 10.52 µg/m3. The effectiveness of a wood stove change out program was also evaluated to determine its efficacy, and modeled results predicted that by changing out 100% of inefficient stoves with an EPA approved model, concentrations could be reduced below the NAAQS.