5 resultados para Overpressured Sands

em Digital Commons - Montana Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this research was to study the physical characteristics, mainly, porosity and permeability of the oil sands from the Cut Bank field, Glacier County, Montana. In so doing, a better understanding of the relation­ship of these physical characteristics to one another and to the pool itself could be obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In studying the Cut Bank field and its numerous wells, it is found that dry holes are surrounded by producing wells, and also that the field as a whole is very irregular; water, oil, and gas zones in many cases following no definite pattern. In some instances, this phenomenon may be due to the lensing and thinning of the producing sands, but it is evident that this is not the only factor. There­fore, the controlling factors must be porosity and permeability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this investigation was to attempt to find some means of increasing the effective porosity and permeabil­ity of the producing sands of the Cut Bank Oil Field, with the hope that thereby the ultimate recovery of petroleum from this field may be increased. Although the percentage increase in production thus effected would undoubtedly be small, it would represent a substantial volume of petroleum in view of the great quantity of oil and gas present in this field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Pennsylvanian Tensleep Sandstone is an eolian and nearshore marine/sabka quartz arenite unit with prominent outcrops along the western Pryor/Bighorn Mountain front east of Red Lodge, MT. Regionally, the formation represents one of the largest ergs in the global geologic record. High permeability makes it an important oil and gas reservoir and aquifer in south central Montana and throughout much of Wyoming. The Tensleep Sandstone’s high percentage of quartz content and grain roundness, due to its eolian origin, makes it a prospective source for natural proppant sand. Three continuous 4-inch cores were obtained during a cooperative project between Montana Tech and industry partners. Using stratigraphic sections, cores, thin sections, and x-ray fluorescence (XRF) analysis, the usefulness and economic feasibility of the Tensleep Sandstone as a minable hydraulic fracture proppant was explored. Usefulness depends on cementation, grain shape, grain size, and depth from surface of the prospective zone. Grain shape and size were determined by thin sections, sieving, and stereomicroscope analysis. Analysis of 20 disaggregated sand samples has shown that as much as 30 percent of the grain sizes fall between 30-50 mesh (medium- to finegrained sand size) and about 45 percent of the grain sizes fall between 70–140 mesh (very fine-grained sand to coarse silt), grain sizes appropriate for some hydraulic fracture operations. Core descriptions and XRF data display the distribution of lithology and cementation. Core descriptions and XRF data display the distribution of lithology and cementation. Elemental (XRF) analyses help to delineate more pure quartz sands from those with grain fractions reflecting fine-grained clastic and evaporitic inputs. The core and nearby stratigraphic sections are used to quantify the amount of overburden and the 3 amount of resource in the area. Initial results show favorable crush strength and useable grain size and shape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The age of rocks found in drill cores, and consequently the depths to possible oil-bearing formations has in many localities been determined by micro-paleontologic studies during the past three decades. Of the different micro-fossils used in this work, foraminifera have been studied most, are the best described, and hence, by far the most helpful.