3 resultados para Natural-Gas Production
em Digital Commons - Montana Tech
Resumo:
Montana's oil and gas industries aggregate a gross income of over 12,000,000 annually to the state. Oil and gas fields have been thoroughly discussed in literature as to geology, location, production and future possibilities. The specific object of this report has been to compile a comprehensive study of the production methods as they occur.
Resumo:
There is practically only one method of gas analysis. This was worked out many years ago by Bunsen, Hempel, and Winkler and consists in the successive absorption with different chemicals of the various constituents of the gas. The only improvement to this method is the oxidation and combustion of different components of a mixture followed by absorption.
Resumo:
The project goal was to determine plant operations and maintenance worker’s level of exposure to mercury during routine and non-routine (i.e. turnarounds and inspections) maintenance events in eight gas processing plants. The project team prepared sampling and analysis plans designed to each plant’s process design and scheduled maintenance events. Occupational exposure sampling and monitoring efforts were focused on the measurement of mercury vapor concentration in worker breathing zone air during specific maintenance events including: pipe scrapping, process filter replacement, and process vessel inspection. Similar exposure groups were identified and worker breathing zone and ambient air samples were collected and analyzed for total mercury. Occupational exposure measurement techniques included portable field monitoring instruments, standard passive and active monitoring methods and an emerging passive absorption technology. Process sampling campaigns were focused on inlet gas streams, mercury removal unit outlets, treated gas, acid gas and sales gas. The results were used to identify process areas with increased potential for mercury exposure during maintenance events. Sampling methods used for the determination of total mercury in gas phase streams were based on the USEPA Methods 30B and EPA 1631 and EPA 1669. The results of four six-week long sampling campaigns have been evaluated and some conclusions and recommendations have been made. The author’s role in this project included the direction of all field phases of the project and the development and implementation of the sampling strategy. Additionally, the author participated in the development and implementation of the Quality Assurance Project Plan, Data Quality Objectives, and Similar Exposure Groups identification. All field generated data was reviewed by the author along with laboratory reports in order to generate conclusions and recommendations.