7 resultados para Lime.
em Digital Commons - Montana Tech
Resumo:
An amalgam is an alloy of mercury with other metals, and amalgamation is the art of making or forming amalgams. In metallurgical language the word is limited to the means adopted for the recovery of gold and silver from their ores by the use of mercury.
Resumo:
The area studied consists of a large body of aplite situated 12 miles south of Butte. It extends eastward almost to the Butte-Pipestone road, southward to Lime Kiln Hill and westward a distance of 3000 feet. The petrographic work was supplemented by a map of the area. Special attention was given to those frequent "Limonite Specks" found in the aplite.
Resumo:
In this thesis I have tried to determine the suitable temperature, time and the amount of soda ash and lime needed for the calcining process. The leaching and purification tests were studied experimentally. The earlier process for making chromate from chromite was not the same as is used today. Therefore I have found it useful to put into this thesis the newest method for making chromate salts and their important uses.
Resumo:
The purpose of this experimental work was to determine with the utilization of a laboratory sized induction furnace a method whereby a high-iron Montana chromite concentrate could be successfully smelted to yield a product suitable for the subsequent production of standard ferrochrome.
Resumo:
At the present time ore bodies being mined are becoming more and more complex in mineral association, thus presenting a more difficult problem in their concentration. Lead-zinc sulphide ores are among the more common ores which present such difficulties.
Resumo:
In this issue...Copper Lounge, Union Pacific Railway, Air Force, Circle K Club, Petroleum Engineers, Montana Power Company, Historical Geology Field Trip, Lime Spur Quarry
Resumo:
Silver Bow Creek (SBC) flows into the Warm Springs Ponds Operable Unit (WSPOU), where various containment cells are used to precipitate copper and other metals (e.g., Cd, Cu, Mn, Pb, Zn). Lime is added seasonally to increase the pH and assist in removal of metals from the water column. Although the WSPOU is effective at removing copper and other cationic trace metals, concentrations of dissolved arsenic exiting the facility are often above the site specific standard, 20 20 ug/L, during low-flow periods each summer and fall. This thesis is a continuation of arsenic geochemistry studies by Montana Tech in the WSPOU. Field work focused on Pond 3, the largest and first in the series of treatment ponds. Shallow groundwater was sampled from 8 PVC piezometers located near the south end of Pond 3. Three sediment pore-water diffusion samplers (“peepers”) were also deployed at the south end of Pond 3 to examine vertical gradients in chemistry in the top 25 cm of the pond sediment. In general, the pH and Eh values of the shallow groundwater and sediment pore-water were less than in the pond water. Concentrations of arsenic were generally higher in subsurface water, and tended to pass through a maximum (up to 530 g/L) about 10 cm below the sediment-water interface. In the peeper cells, there was a strong positive correlation between dissolved As and dissolved Fe, and an inverse correlation with sulfate. Therefore, the zone of arsenic release corresponds to a zone of bacterial Fe and sulfate reduction in the shallow, organic-rich sediment. Redox speciation of arsenic shows that arsenate (As(V)) is dominant in the pond, and arsenite (As(III)) is dominant in the subsurface water. A series of laboratory experiments with pH adjustment were completed using SBC water collected near the inlet to the WSPOU as well as water and shallow sediment collected from Pond 3. Water ± sediment mesocosms were set up in 1-L Nalgene bottles (closed system) or a 20-L aquarium (open system), both with continuous stirring. The pH of the mesocosm was adjusted by addition of NaOH or HNO3 acid. The closed system provided better pH control since the water was not in contact with the atmosphere, which prevented exchange of carbon dioxide. In both the closed and open systems, dissolved arsenic concentrations either decreased or stayed roughly the same with increase in pH to values > 11. Therefore, the release of dissolved As into the treatment ponds in low-flow periods is not due to changes in pH alone. All of these results support the hypothesis that the arsenic release in WSPOU is linked to microbial reduction of ferric oxide minerals in the organic-rich sediment. Upwards diffusion of dissolved As from the sediment pore-water into the pond water is the most likely explanation for the increase in As concentration of the WSPOU in low-flow periods.