16 resultados para Iron chelator
em Digital Commons - Montana Tech
Resumo:
It is a well-known fact that, in the electrolysis of a CuSO4 solution containing iron sulfate, using insoluble anodes, with the depletion of copper, the point is finally reached where the current efficiency becomes zero. This decrease in current efficiency is due to the oxidation of the ferrous sulfate to the ferric condition at the anode, by the oxygen liberated. The resulting ferric sulfate diffuses over to the cathode and there dissolves copper from the cathode according to the chemical equation Cu + Fe2 (SO4)3 = CuSO4 + 2FeSO4. This copper, which has been deposited at the cathode by the electric current, is thus redissolved by the Fe2(SO4)3. The solution of the copper causes at the same time a formation of FeSO4 which in turn diffuses over to the anode and is there oxidized to Fe2(SO4)3; and so the cycle continues, using electric current without rendering useful work. E. H. Larison has noted that a definite amount of ferric salts must be reduced to the ferrous condition before all the copper will remain on the cathode; he does not state, however, just what this point is. L. Addicks has plotted the relation between current efficiency and ferric sulphate content. The existence of the results scattered the points more or less, although the decrease in current efficiency with increased ferric sulphate content is clearly indicated. E. T.Kern has likewise noted that the smaller the amount of copper in the solution, the greater is the reduction of current efficiency. In this work, therefore, it was desired to determine what amount of ferric iron was permissible in a copper sulfate solution of definite concentration before the current efficiency would drop to zero, and what, if any, was the effect of definite Cu:Fe’’’ratio upon the current efficiency of the electrolysis.
Resumo:
In the treatment of copper ores by hydro-electro-metallurgical methods, not only is copper deposited, but other metals are also dissolved. In practice it has been found* that iron, under certain conditions, causes the copper to deposit on the cathode as a nonadherent precipitate and also that the iron in solution causes a great decrease in current efficiency, especially when the electrolysis is conducted by operating with a higher current density at the cathode than at the anode. The present investigation deals with the effects of the two valences of iron on the current efficiency and endeavors to determine whether or not there is a ratio of the two at which point the efficiency becomes zero or approaches it.
Resumo:
Electrolytic iron as deposited is brittle and therefore must be annealed. After annealing, the material is ductile and closely resembles copper in its behavior under work. It is claimed to be more resistant to corrosion than dead soft iron. It also has the advantage of corroding uniformly ( ordinary soft iron develops pin holes which shorten its life considerably). The extreme purity of electrolytic iron namely makes it very suitable as a base metal for alloys. Its ductility opens up a field for use in the manufacture of cold rolled strip, seamless tubes, and wire.
Resumo:
The lead storage battery as it is used today is made up of the pasted type plates of lead dioxide, the anode, and sponge lead, the cathode, and wooden or hard rubber separators, which serve to insulate these from one another. In manufacturing these, it is desirable to keep them free from impurities.
Resumo:
Powder metallurgy is a branch of metallurgy which produces metallic compacts in their final forms by means of pressure and heat-treatment from the powders. The products of powder metallurgy are being used in our daily lives quite often. For example, the tungsten wires in the electric bulbs to the silver-tin fillings of our teeth.
Resumo:
The purpose of this paper is to introduce to the reader, an iron deposit in the Princeton district, about 19 miles northeast by highway from Philipsburg, Montana. Heretofore there has been no written literature on this deposit. It is also intended to investigate the economic possibilities of iron ore in general in the State of Montana.
Resumo:
Since 1880, when Wolcott Gibbs made the suggestion that mercury could be used as a cathode in gravimetric electroanalysis, many articles have appeared in literature either criticizing the method or citing successful results which have been obtained by it.
Resumo:
Various electrolytes were experimented with in an attempt to deposit an iron-manganese alloy. An Alloy was obtained from a solution containing ferrous ammonium sulfate, manganous sulfate, and ammonium sulfate. Further experimentation was done in an effort to determine the optimum conditions of deposition and the highest manganese alloy which could be produced.
Resumo:
In this thesis the purpose was to obtain a good iron deposit from a relatively simple bath. The deposit was to be of good nature and low in Carbon content. Also included is a summary of the uses to which electrolytic iron can be put as well as a summary of work done by other researchers in depositing iron electrolytically.
Resumo:
An electrodeposition of an iron-manganese alloy was made from the same conditions determined by previous research. Various addition agents were experimented with in an attempt to produce better conditions for electro-deposition. It was found advantageous to add small amounts of sodium lauryl sulfate and ammonium sulfite to the electrolyte.
Resumo:
This thesis is concerned primarily with the production of metal powder compacts of iron and tin. In producing these compacts, the effects of processing variables on some of the essential properties of the pellets made were investigated.
Resumo:
Although powder metallurgical methods have been used for years to fabricate tungsten and platinum, very little scientific data have been recorded until the beginning of this century. A large percentage of all commercial production at present is based upon past practice rather than upon scientific knowledge.
Resumo:
The art of Powder Metallurgy deals with the preparation of metal powders and their utilization. As a more pertinent definition, the following has been suggested: "Powder Metallurgy is the art of producing metal powders and shaped objects from individual, mixed, or alloyed metal powders, with or without the inclusion of non-metallic constituents".
Resumo:
Iron was electro-deposited from a ferrous chloride bath. Studies were made of deposits formed when current density was varied, and finally when both current density and temperature were changed. An attempt was made to lay the ground work for a long range study of the chloride bath, and to determine the most simple conditions possible for obtaining a smooth, even, and thick deposit.
Resumo:
The purpose of this study was to determine the relative rate of corrosion of iron-tin alloys containing low percentages of tin. Since in the world today, a great deal of work is being done to develop large tin deposits and new methods devised to treat these ores, it is possible that the metal will become abundant and will obtain a more important position in the metal industry.