9 resultados para Iron alloys
em Digital Commons - Montana Tech
Resumo:
Various electrolytes were experimented with in an attempt to deposit an iron-manganese alloy. An Alloy was obtained from a solution containing ferrous ammonium sulfate, manganous sulfate, and ammonium sulfate. Further experimentation was done in an effort to determine the optimum conditions of deposition and the highest manganese alloy which could be produced.
Resumo:
An electrodeposition of an iron-manganese alloy was made from the same conditions determined by previous research. Various addition agents were experimented with in an attempt to produce better conditions for electro-deposition. It was found advantageous to add small amounts of sodium lauryl sulfate and ammonium sulfite to the electrolyte.
Resumo:
The purpose of this study was to determine the relative rate of corrosion of iron-tin alloys containing low percentages of tin. Since in the world today, a great deal of work is being done to develop large tin deposits and new methods devised to treat these ores, it is possible that the metal will become abundant and will obtain a more important position in the metal industry.
Resumo:
Although the alteration of properties resulting from the alloying of metals in their usual commercial forms has been extensively investigated, the field of electrodeposition of alloys is believed generally not to have received the attention that it merits.
Resumo:
It is known that the electrical resistance of annealed metals is usually smaller than that of metals in their cold worked state. The curve showing the relation between electrical resistance and annealing temperature reaches a minimum; continued annealing at higher temperature produces an increase in the electrical resistance. In the case of alloys it has been noted that a second decrease occurs at higher annealing temperature. The following work corroborates the observance of previous investigations. The electrical resistance of cold worked copper, gold, nickel, and iron decreased with annealing and then increased, the minimum being around 300° C. or 400° C. Monel metal showed a minimum resistance followed by an increase which in turn was followed by a second decrease.
Resumo:
Electrolytic iron as deposited is brittle and therefore must be annealed. After annealing, the material is ductile and closely resembles copper in its behavior under work. It is claimed to be more resistant to corrosion than dead soft iron. It also has the advantage of corroding uniformly ( ordinary soft iron develops pin holes which shorten its life considerably). The extreme purity of electrolytic iron namely makes it very suitable as a base metal for alloys. Its ductility opens up a field for use in the manufacture of cold rolled strip, seamless tubes, and wire.
Resumo:
Although there is no standardized list of alloys, most investigators have, to avoid confusion, concurred in at least grouping the metals under several general heads. Precious metals: gold, silver and the platinum group; the light metals: aluminum and magnesium; the non-ferrous metals (excluding all steels and iron-base alloys); and the antifriction metals.
Some Preliminary Investiagtions of the Magnetic Permeabilities of Alloys of the Ferromagnetic Metals
Resumo:
The problem presented for this thesis was an investigation of the magnetic properties of the alloys produced by the methods of powder metallurgy. The question behind this was the correlation of the magnetic properties with the bonding properties and with the diffusion of the constituents.
Resumo:
A large number of alloys of varying percentages of copper and antimony were prepared. These alloys were treated in various ways which might be expected to produce age hardening. The effect of cold working was studied in the range where the alloys were malleable.