2 resultados para Coal mine waste

em Digital Commons - Montana Tech


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Creating Lakes from Open Pit Mines: Processes and Considerations, Emphasis on Northern Environments. This document summarizes the literature of mining pit lakes (through 2007), with a particular focus on issues that are likely to be of special relevance to the creation and management of pit lakes in northern climates. Pit lakes are simply waterbodies formed by filling the open pit left upon the completion of mining operations with water. Like natural lakes, mining pit lakes display a huge diversity in each of these subject areas. However, pit lakes are young and therefore are typically in a non-equilibrium state with respect to their rate of filling, water quality, and biology. Separate sections deal with different aspects of pit lakes, including their morphometry, geology, hydrogeology, geochemistry, and biology. Depending on the type and location of the mine, there may be opportunities to enhance the recreational or ecological benefits of a given pit lake, for example, by re-landscaping and re-vegetating the shoreline, by adding engineered habitat for aquatic life, and maintaining water quality. The creation of a pit lake may be a regulatory requirement to mitigate environmental impacts from mining operations, and/or be included as part of a closure and reclamation plan. Based on published case studies of pit lakes, large-scale bio-engineering projects have had mixed success. A common consensus is that manipulation of pit lake chemistry is difficult, expensive, and takes many years to achieve remediation goals. For this reason, it is prudent to take steps throughout mine operation to reduce the likelihood of future water quality problems upon closure. Also, it makes sense to engineer the lake in such a way that it will achieve its maximal end-use potential, whether it be permanent and safe storage of mine waste, habitat for aquatic life, recreation, or water supply.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Silver Bow Creek runs approximately 25 miles from Butte to Warm Springs, where it joins Warm Springs Creek to form the Clark Fork River. This historic creek was terribly contaminated with mine wastes around the turn of the 20th century, leaving many "slickens" that persisted into the 21st century, when it became a Superfund remediation project. More than 5.5 million cubic yards of stream-deposited mine waste have been removed and 1,650 acres revegetated. Chief contaminants are copper, zinc, and arsenic, but acidic soils are often equally or more limiting to plants. The stream was relocated, and mine wastes were replaced with biologically inert cover soil. Richard A. Prodgers is currently a plant ecologist with Bighorn Environmental Sciences in Dillon, Montana.