2 resultados para zero-point vibrational energy
em Digital Commons - Michigan Tech
Resumo:
For countless communities around the world, acquiring access to safe drinking water is a daily challenge which many organizations endeavor to meet. The villages in the interior of Suriname have been the focus of many improved drinking water projects as most communities are without year-round access. Unfortunately, as many as 75% of the systems in Suriname fail within several years of implementation. These communities, scattered along the rivers and throughout the jungle, lack many of the resources required to sustain a centralized water treatment system. However, the centralized system in the village of Bendekonde on the Upper Suriname River has been operational for over 10 years and is often touted by other communities. The Bendekonde system is praised even though the technology does not differ significantly from other failed systems. Many of the water systems that fail in the interior fail due to a lack of resources available to the community to maintain the system. Typically, the more complex a system becomes, so does the demand for additional resources. Alternatives to centralized systems include technologies such as point-of-use water filters, which can greatly reduce the necessity for outside resources. In particular, ceramic point-of-use water filters offer a technology that can be reasonably managed in a low resource setting such as that in the interior of Suriname. This report investigates the appropriateness and effectiveness of ceramic filters constructed with local Suriname clay and compares the treatment effectiveness to that of the Bendekonde system. Results of this study showed that functional filters could be produced from Surinamese clay and that they were more effective, in a controlled laboratory setting, than the field performance of the Bendekonde system for removing total coliform. However, the Bendekonde system was more successful at removing E. coli. In a life-cycle assessment, ceramic water filters manufactured in Suriname and used in homes for a lifespan of 2 years were shown to have lower cumulative energy demand, as well as lower global warming potential than a centralized system similar to that used in Bendekonde.
Resumo:
In this report we will investigate the effect of negative energy density in a classic Friedmann cosmology. Although never measured and possibly unphysical, the evolution of a Universe containing a significant cosmological abundance of any of a number of hypothetical stable negative energy components is explored. These negative energy (Ω < 0) forms include negative phantom energy (w<-1), negative cosmological constant (w=-1), negative domain walls (w=-2/3), negative cosmic strings (w= -1/3), negative mass (w=0), negative radiation (w=1/3), and negative ultra-light (w > 1/3). Assuming that such universe components generate pressures as perfect fluids, the attractive or repulsive nature of each negative energy component is reviewed. The Friedmann equations can only be balanced when negative energies are coupled to a greater magnitude of positive energy or positive curvature, and minimal cases of both of these are reviewed. The future and fate of such universes in terms of curvature, temperature, acceleration, and energy density are reviewed including endings categorized as a Big Crunch, Big Void, or Big Rip and further qualified as "Warped", "Curved", or "Flat", "Hot" versus "Cold", "Accelerating" versus" Decelerating" versus "Coasting". A universe that ends by contracting to zero energy density is termed a Big Poof. Which contracting universes ``bounce" in expansion and which expanding universes ``turnover" into contraction are also reviewed. The name by which the ending of the Universe is mentioned is our own nomenclature.