1 resultado para work function (WF)
em Digital Commons - Michigan Tech
Filtro por publicador
- Repository Napier (3)
- Aberdeen University (5)
- Abertay Research Collections - Abertay University’s repository (3)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (9)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (17)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (23)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (10)
- Brock University, Canada (6)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- CaltechTHESIS (7)
- Cambridge University Engineering Department Publications Database (22)
- CentAUR: Central Archive University of Reading - UK (15)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (29)
- Cochin University of Science & Technology (CUSAT), India (5)
- Coffee Science - Universidade Federal de Lavras (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (7)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Peer Publishing (3)
- DigitalCommons@The Texas Medical Center (13)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Glasgow Theses Service (4)
- Helda - Digital Repository of University of Helsinki (7)
- Indian Institute of Science - Bangalore - Índia (29)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (11)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (27)
- Queensland University of Technology - ePrints Archive (534)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (43)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- Universidad de Alicante (7)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (13)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (5)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Metodista de São Paulo (2)
- Universita di Parma (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (3)
- Université de Montréal, Canada (5)
- University of Michigan (4)
- University of Queensland eSpace - Australia (2)
- University of Washington (6)
Resumo:
This project examines the current available work on the explicit and implicit parallelization of the R scripting language and reports on experimental findings for the development of a model for predicting effective points for automatic parallelization to be performed, based upon input data sizes and function complexity. After finding or creating a series of custom benchmarks, an interval based on data size and time complexity where replacement becomes a viable option was found; specifically between O(N) and O(N3) exclusive. As data size increases, the benefits of parallel processing become more apparent and a point is reached where those benefits outweigh the costs in memory transfer time. Based on our observations, this point can be predicted with a fair amount of accuracy using regression on a sample of approximately ten data sizes spread evenly between a system determined minimum and maximum size.