19 resultados para woody biomass
em Digital Commons - Michigan Tech
Resumo:
A considerable portion of public lands in the United States is at risk of uncharacteristically severe wildfires due to a history of fire suppression. Wildfires already have detrimental impacts on the landscape and on communities in the wildland-urban interface (WUI) due to unnatural and overstocked forests. Strategies to mitigate wildfire risk include mechanical thinning and prescribed burning in areas with high wildfire risk. The material removed is often of little or no economic value. Woody biomass utilization (WBU) could offset the costs of hazardous fuel treatments if removed material could be used for wood products, heat, or electricity production. However, barriers due to transportation costs, removal costs, and physical constraints (such as steep slopes) hinder woody biomass utilization. Various federal and state policies attempt to overcome these barriers. WBU has the potential to aid in wildfire mitigation and meet growing state mandates for renewable energy. This research utilizes interview data from individuals involved with on-the-ground woody biomass removal and utilization to determine how federal and state policies influence woody biomass utilization. Results suggest that there is not one over-arching policy that hinders or promotes woody biomass utilization, but rather woody biomass utilization is hindered by organizational constraints related to time, cost, and quality of land management agencies’ actions. However, the use of stewardship contracting (a hybrid timber sale and service contract) shows promise for increased WBU, especially in states with favorable tax policies and renewable energy mandates. Policy recommendations to promote WBU include renewal of stewardship contracting legislations and a re-evaluation of land cover types suited for WBU. Potential future policies to consider include the indirect role of carbon dioxide emission reduction activities to promote wood energy and future impacts of air quality regulations.
Resumo:
Green-tree retention under the conceptual framework of ecological forestry has the potential to provide both biomass feedstock for industry and maintain quality wildlife habitat. I examined the effects of retained canopy trees as biological legacies (“legacy trees”) in aspen (Populus spp.) forests on above-ground live woody biomass, understory plant floristic quality, and bird diversity. Additionally, I evaluated habitat quality for a high conservation priority species, the Golden-winged Warbler (Vermivora chrysoptera). I selected 27 aspen-dominated forest stands in northern Wisconsin with nine stands in each of three legacy tree retention treatments (conifer retention, hardwood retention, and clearcuts or no retention) across a chronosequence (4-36 years post-harvest). Conifer retention stands had greater legacy tree and all tree species biomass but lower regenerating tree biomass than clearcuts. Coniferous but not hardwood legacy trees appeared to suppress regenerating tree biomass. I evaluated the floristic quality of the understory plant assemblage by estimating the mean coefficient of conservatism (C). Mean C was lower in young stands than in middle-age or old stands; there was a marginally significant (p=0.058) interaction effect between legacy tree retention treatment and stand age. Late-seral plant species were positively associated with stand age and legacy tree diameter or age revealing an important relationship between legacy tree retention and stand development. Bird species richness was greatest in stands with hardwood retention particularly early in stand development. Six conservation priority bird species were indicators of legacy tree retention or clearcuts. Retention of legacy trees in aspen stands provided higher quality nest habitat for the Golden-winged Warbler than clearcuts based on high pairing success and nesting activity. Retention of hardwoods, particularly northern red oak (Quercus rubra), yielded the most consistent positive effects in this study with the highest bird species richness and the highest quality habitat for the Golden-winged Warbler. This treatment maintained stand biomass comparable to clearcuts and did not suppress regenerating tree biomass. In conclusion, legacy tree retention can enhance even-aged management techniques to produce a win-win scenario for the conservation of declining bird species and late-seral understory plants and for production of woody biomass feedstock from naturally regenerating aspen forests.
Resumo:
Biofuels are an increasingly important component of worldwide energy supply. This research aims to understand the pathways and impacts of biofuels production, and to improve these processes to make them more efficient. In Chapter 2, a life cycle assessment (LCA) is presented for cellulosic ethanol production from five potential feedstocks of regional importance to the upper Midwest - hybrid poplar, hybrid willow, switchgrass, diverse prairie grasses, and logging residues - according to the requirements of Renewable Fuel Standard (RFS). Direct land use change emissions are included for the conversion of abandoned agricultural land to feedstock production, and computer models of the conversion process are used in order to determine the effect of varying biomass composition on overall life cycle impacts. All scenarios analyzed here result in greater than 60% reduction in greenhouse gas emissions relative to petroleum gasoline. Land use change effects were found to contribute significantly to the overall emissions for the first 20 years after plantation establishment. Chapter 3 is an investigation of the effects of biomass mixtures on overall sugar recovery from the combined processes of dilute acid pretreatment and enzymatic hydrolysis. Biomass mixtures studied were aspen, a hardwood species well suited to biochemical processing; balsam, a high-lignin softwood species, and switchgrass, an herbaceous energy crop with high ash content. A matrix of three different dilute acid pretreatment severities and three different enzyme loading levels was used to characterize interactions between pretreatment and enzymatic hydrolysis. Maximum glucose yield for any species was 70% oftheoretical for switchgrass, and maximum xylose yield was 99.7% of theoretical for aspen. Supplemental β-glucosidase increased glucose yield from enzymatic hydrolysis by an average of 15%, and total sugar recoveries for mixtures could be predicted to within 4% by linear interpolation of the pure species results. Chapter 4 is an evaluation of the potential for producing Trichoderma reesei cellulose hydrolases in the Kluyveromyces lactis yeast expression system. The exoglucanases Cel6A and Cel7A, and the endoglucanase Cel7B were inserted separately into the K. lactis and the enzymes were analyzed for activity on various substrates. Recombinant Cel7B was found to be active on carboxymethyl cellulose and Avicel powdered cellulose substrates. Recombinant Cel6A was also found to be active on Avicel. Recombinant Cel7A was produced, but no enzymatic activity was detected on any substrate. Chapter 5 presents a new method for enzyme improvement studies using enzyme co-expression and yeast growth rate measurements as a potential high-throughput expression and screening system in K. lactis yeast. Two different K. lactis strains were evaluated for their usefulness in growth screening studies, one wild-type strain and one strain which has had the main galactose metabolic pathway disabled. Sequential transformation and co-expression of the exoglucanase Cel6A and endoglucanase Cel7B was performed, and improved hydrolysis rates on Avicel were detectable in the cell culture supernatant. Future work should focus on hydrolysis of natural substrates, developing the growth screening method, and utilizing the K. lactis expression system for directed evolution of enzymes.
Resumo:
Bioplastics are polymers (such as polyesters) produced from bacterial fermentations that are biodegradable and nonhazardous. They are produced by a wide variety of bacteria and are made only when stress conditions allow, such as when nutrient levels are low, more specifically levels of nitrogen and oxygen. These stress conditions cause certain bacteria to build up excess carbon deposits as energy reserves in the form of polyhydroxyalkanoates (PHAs). PHAs can be extracted and formed into actual plastic with the same strength of conventional, synthetic-based plastics without the need to rely on foreign petroleum. The overall goal of this project was to select for a bacteria that could grow on sugars found in the lignocellulosic biomass, and get the bacteria to produce PHAs and peptidoglycan. Once this was accomplished the goal was to extract PHAs and peptidoglycan in order to make a stronger more rigid plastic, by combing them into a co-polymer. The individual goals of this project were to: (1) Select and screen bacteria that are capable of producing PHAs by utilizing the carbon/energy sources found in lignocellulosic biomass; (2) Maximize the utilization of those sugars present in woody biomass in order to produce optimal levels of PHAs. (3) Use room temperature ionic liquids (RTILs) in order to separate the cell membrane and peptidoglycan, allowing for better extraction of PHAs and more intact peptidoglycan. B. megaterium a Gram-positive PHA-producing bacterium was selected for study in this project. It was grown on a variety of different substrates in order to maximize both its growth and production of PHAs. The optimal conditions were found to be 30°C, pH 6.0 and sugar concentration of either 30g/L glucose or xylose. After optimal growth was obtained, both RTILs and enzymatic treatments were used to break the cell wall, in order to extract the PHAs, and peptidoglycan. PHAs and peptidoglycan were successfully extracted from the cell, and will be used in the future to create a new stronger co-polymer. Peptidoglycan recovery yield was 16% of the cells’ dry weight.
Resumo:
To mitigate greenhouse gas (GHG) emissions and reduce U.S. dependence on imported oil, the United States (U.S.) is pursuing several options to create biofuels from renewable woody biomass (hereafter referred to as “biomass”). Because of the distributed nature of biomass feedstock, the cost and complexity of biomass recovery operations has significant challenges that hinder increased biomass utilization for energy production. To facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization and tapping unused forest residues, it is proposed to develop biofuel supply chain models based on optimization and simulation approaches. The biofuel supply chain is structured around four components: biofuel facility locations and sizes, biomass harvesting/forwarding, transportation, and storage. A Geographic Information System (GIS) based approach is proposed as a first step for selecting potential facility locations for biofuel production from forest biomass based on a set of evaluation criteria, such as accessibility to biomass, railway/road transportation network, water body and workforce. The development of optimization and simulation models is also proposed. The results of the models will be used to determine (1) the number, location, and size of the biofuel facilities, and (2) the amounts of biomass to be transported between the harvesting areas and the biofuel facilities over a 20-year timeframe. The multi-criteria objective is to minimize the weighted sum of the delivered feedstock cost, energy consumption, and GHG emissions simultaneously. Finally, a series of sensitivity analyses will be conducted to identify the sensitivity of the decisions, such as the optimal site selected for the biofuel facility, to changes in influential parameters, such as biomass availability and transportation fuel price. Intellectual Merit The proposed research will facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization in the renewable biofuel industry. The GIS-based facility location analysis considers a series of factors which have not been considered simultaneously in previous research. Location analysis is critical to the financial success of producing biofuel. The modeling of woody biomass supply chains using both optimization and simulation, combing with the GIS-based approach as a precursor, have not been done to date. The optimization and simulation models can help to ensure the economic and environmental viability and sustainability of the entire biofuel supply chain at both the strategic design level and the operational planning level. Broader Impacts The proposed models for biorefineries can be applied to other types of manufacturing or processing operations using biomass. This is because the biomass feedstock supply chain is similar, if not the same, for biorefineries, biomass fired or co-fired power plants, or torrefaction/pelletization operations. Additionally, the research results of this research will continue to be disseminated internationally through publications in journals, such as Biomass and Bioenergy, and Renewable Energy, and presentations at conferences, such as the 2011 Industrial Engineering Research Conference. For example, part of the research work related to biofuel facility identification has been published: Zhang, Johnson and Sutherland [2011] (see Appendix A). There will also be opportunities for the Michigan Tech campus community to learn about the research through the Sustainable Future Institute.
Resumo:
In recent years, growing attention has been devoted to the use of lignocellulosic biomass as a feedstock to produce renewable carbohydrates as a source of energy products, including liquid alternatives to fossil fuels. The benefits of developing woody biomass to ethanol technology are to increase the long-term national energy security, reduce fossil energy consumption, lower greenhouse gas emissions, use renewable rather than depletable resources, and create local jobs. Currently, research is driven by the need to reduce the cost of biomass-ethanol production. One of the preferred methods is to thermochemically pretreat the biomass material and subsequently, enzymatically hydrolyze the pretreated material to fermentable sugars that can then be converted to ethanol using specialized microorganisms. The goals of pretreatment are to remove the hemicellulose fraction from other biomass components, reduce bioconversion time, enhance enzymatic conversion of the cellulose fraction, and, hopefully, obtain a higher ethanol yield. The primary goal of this research is to obtain kinetic detailed data for dilute acid hydrolysis for several timber species from the Upper Peninsula of Michigan and switchgrass. These results will be used to identify optimum reaction conditions to maximize production of fermentable sugars and minimize production of non-fermentable byproducts. The structural carbohydrate analysis of the biomass species used in this project was performed using the procedure proposed by National Renewable Energy Laboratory (NREL). Subsequently, dilute acid-catalyzed hydrolysis of biomass, including aspen, basswood, balsam, red maple, and switchgrass, was studied at various temperatures, acid concentrations, and particle sizes in a 1-L well-mixed batch reactor (Parr Instruments, ii Model 4571). 25 g of biomass and 500 mL of diluted acid solution were added into a 1-L glass liner, and then put into the reactor. During the experiment, 5 mL samples were taken starting at 100°C at 3 min intervals until reaching the targeted temperature (160, 175, or 190°C), followed by 4 samples after achieving the desired temperature. The collected samples were then cooled in an ice bath immediately to stop the reaction. The cooled samples were filtered using 0.2 μm MILLIPORE membrane filter to remove suspended solids. The filtered samples were then analyzed using High Performance Liquid Chromatography (HPLC) with a Bio-Rad Aminex HPX-87P column, and refractive index detection to measure monomeric and polymeric sugars plus degradation byproducts. A first order reaction model was assumed and the kinetic parameters such as activation energy and pre-exponential factor from Arrhenius equation were obtained from a match between the model and experimental data. The reaction temperature increases linearly after 40 minutes during experiments. Xylose and other sugars were formed from hemicellulose hydrolysis over this heat up period until a maximum concentration was reached at the time near when the targeted temperature was reached. However, negligible amount of xylose byproducts and small concentrations of other soluble sugars, such as mannose, arabinose, and galactose were detected during this initial heat up period. Very little cellulose hydrolysis yielding glucose was observed during the initial heat up period. On the other hand, later in the reaction during the constant temperature period xylose was degraded to furfural. Glucose production from cellulose was increased during this constant temperature period at later time points in the reaction. The kinetic coefficient governing the generation of xylose from hemicellulose and the generation of furfural from xylose presented a coherent dependence on both temperature and acid concentration. However, no effect was observed in the particle size. There were three types of biomass used in this project; hardwood (aspen, basswood, and red maple), softwood (balsam), and a herbaceous crop (switchgrass). The activation energies and the pre-exponential factors of the timber species and switchgrass were in a range of 49 - 180 kJ/mol and from 7.5x104 - 2.6x1020 min-1, respectively, for the xylose formation model. In addition, for xylose degradation, the activation energies and the preexponential factors ranged from 130 - 170 kJ/mol and from 6.8x1013 - 3.7x1017 min-1, respectively. The results compare favorably with the literature values given by Ranganathan et al, 1985. Overall, up to 92 % of the xylose was able to generate from the dilute acid hydrolysis in this project.
Resumo:
Biofuels are alternative fuels that have the promise of reducing reliance on imported fossil fuels and decreasing emission of greenhouse gases from energy consumption. This thesis analyses the environmental impacts focusing on the greenhouse gas (GHG) emissions associated with the production and delivery of biofuel using the new Integrated Hydropyrolysis and Hydroconversion (IH2) process. The IH2 process is an innovative process for the conversion of woody biomass into hydrocarbon liquid transportation fuels in the range of gasoline and diesel. A cradle-to-grave life cycle assessment (LCA) was used to calculate the greenhouse gas emissions associated with diverse feedstocks production systems and delivery to the IH2 facility plus producing and using these new renewable liquid fuels. The biomass feedstocks analyzed include algae (microalgae), bagasse from a sugar cane-producing locations such as Brazil or extreme southern US, corn stover from Midwest US locations, and forest feedstocks from a northern Wisconsin location. The life cycle greenhouse gas (GHG) emissions savings of 58%–98% were calculated for IH2 gasoline and diesel production and combustion use in vehicles compared to fossil fuels. The range of savings is due to different biomass feedstocks and transportation modes and distances. Different scenarios were conducted to understand the uncertainties in certain input data to the LCA model, particularly in the feedstock production section, the IH2 biofuel production section, and transportation sections.
Resumo:
A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.
Resumo:
The importance of the United States' wood and wood byproducts as biomass feedstocks is increasing as the concern about security and sustainability of global energy production continues to rise. Thus, second generation woody feedstock sources in Michigan, e.g., hybrid poplar and hybrid willow (Populus spp.), are viewed as a potential source of biomass for the proposed biofuel ethanol production plant in Kinross, MI. It is important to gain an understanding of the spatial distribution of current feedstock sources, harvesting accessibility via the transportation infrastructure and land ownerships in order to ensure long-term feedstock extent. This research provides insights into the current extent of aspen and northern hardwoods, and an assessment of potential for expanding the area of these feedstock sources based on pre-European settlement conditions. A geographic information system (GIS) was developed to compile available geospatial data for 33 counties located within 150 miles of the Kinross facility. These include present day and pre-European settlement land use/cover, soils, road infrastructure, and land ownerships. The results suggest that a significant amount of northern hardwoods has been converted to other land use/cover types since European settlement, and the "scattering" of aspen stands has increased. Furthermore, a significant amount of woody biomass is available in close proximity to the existing road network, which can be effectively utilized as feedstock. Potential aspen and northern hardwoods restoration areas are identified in the vicinity of road networks which can be used for future woody feedstock production.
Resumo:
Auxin is a key regulator in plant growth and development. This dissertation examines the role of auxin and polar auxin transport in woody growth and development. Strategies of promoter reporter system, microarray expression analysis, transgenic modification, physiological assays, anatomical analysis, and histochemical/biochemical assays were employed to improve our understanding of auxin study in Populus. The results demonstrate various aspects of auxin regulation on shoot growth, root development, wood formation, and gravitropism in woody tissues. We describe the behavior of the DR5 reporter system for measuring auxin concentrations and response in stably transformed Populus trees. Our study shows that DR5 reporter system can be efficiently used in Populus to study auxin biology at a cellular resolution. We investigated the global gene expression in responding to auxin in Populus root. The results revealed groups of IBA up- and down- regulated genes involved in various biological processes including cell wall modification, root growth and lateral root formation, transporter activity and hormone crosstalk. We also verify two of the identified genes' function by transgenic modification in Populus, which encode auxin efflux carrier PtPIN9 and transcription factor PtERF72. We investigated the role of PtPIN9 in woody growth and development, especially in wood formation and gravitropic response in woody stem. We found that overexpressing PtPIN9 enhanced several growth parameters while suppression of PtPIN9 has inhibited tension wood formation. Our results show that PIN9 and other members from PIN family could be possible useful tools for increasing biomass productivity, wood quality, or in modifying plant form.
Resumo:
The main objective of this research was to investigate pyrolysis and torrefaction of forest biomass species using a micropyrolysis instrument. It was found that 30-45% of the original sample mass remained as bio-char in the pyrolysis temperature range of 500 - 700˚C for aspen, balsam, and switchgrass. The non-char mass was converted to gaseous and vapor products, of which 10-55% was water and syngas, 2-12% to acetic acid, 2-12% to hydroxypropanone, 1-3% to furaldehyde, and 5-15% to various phenolic compounds. In addition, several general trends in the evolution of gaseous species were indentified when woody feedstocks were pyrolyzed. With increasing temperature it was observed that: (1) the volume of gas produced increased, (2) the volume of CO2 decreased and the volumes of CO and CH4 increased, and (3) the rates of gas evolution increased. In the range of torrefaction temperature (200 - 300˚C), two mechanistic models were developed to predict the rates of CO2 and acetic acid product formation. The models fit the general trend of the experimental data well, but suggestions for future improvement were also noted. Finally, it was observed that using torrefaction as a pre-curser to pyrolysis improves the quality of bio-oil over traditional pyrolysis by reducing the acidity through removal of acetic acid, reducing the O/C ratio by removal of some oxygenated species, and removing a portion of the water.
Resumo:
Woody Guthrie’s song, “The 1913 Massacre,” written around 1940-41, has become something of a folk anthem for progressives, leftists, and labor supporters. It depicts the Italian Hall Disaster of December 24, 1913, in a plainspoken and colorful way, but has been (rightfully) described as “deeply flawed historically.” Much like Guthrie’s English-language folk songs, Finnish immigrant Santeri Mäkelä had a major impact on capturing the working-world around him. Mäkelä’s lyrics for the “Kaivantomiehen Laulu (The Miners’ Song)” were first published in Hancock, 1909, in “Uusi Työväen Laulukirja (The New Workers’ Songbook),” and was probably sung widely by Finnish strikers during the 1913-14 Michigan Copper Strike. Leading up to, and during this Strike Centennial year, there have been renewed performances of the song, both in Finland and the United States—but only in the original Finnish language. This presentation will delve into the accuracy, history, and lyrics of these two important, but historically problematic labor songs.
Resumo:
Anthropogenic activities continue to drive atmospheric CO2 and O3 concentrations to levels higher than during the pre-industrial era. Accumulating evidence indicates that both elevated CO2 and elevated O3 could modify the quantity and biochemistry of woody plant biomass. Anatomical properties of woody plants are largely influenced by the activity of the cambium and the growth characteristics of wood cells, which are in turn influenced by a range of environmental factors. Hence, alterations in the concentrations of atmospheric CO2 and / or O3 could also impact wood anatomical properties. Many fungi derive their metabolic resources for growth from plant litter, including woody tissue, and therefore modifications in the quantity, biochemistry and anatomical properties of woody plants in response to elevated CO2 and / or O3 could impact the community of wood-decaying fungi and rates of wood decomposition. Consequently carbon and nutrient cycling and productivity of terrestrial ecosystem could also be impacted. Alterations in wood structure and biochemistry of woody plants could also impact wood density and subsequently impact wood quality. This dissertation examined the long term effects of elevated CO2 and / or O3 on wood anatomical properties, wood density, wood-decaying fungi and wood decomposition of northern hardwood tree species at the Aspen Free-Air CO2 and O3 Enrichment (Aspen FACE) project, near Rhinelander, WI, USA. Anatomical properties of wood varied significantly with species and aspen genotypes and radial position within the stem. Elevated CO2 did not have significant effects on wood anatomical properties in trembling aspen, paper birch or sugar maple, except for marginally increasing (P < 0.1) the number of vessels per square millimeter. Elevated O3 marginally or significantly altered vessel lumen diameter, cell wall area and vessel lumen area proportions depending on species and radial position. In line with the modifications in the anatomical properties, elevated CO2 and O3, alone, significantly modified wood density but effects were species and / or genotype specific. However, the effects of elevated CO2 and O3, alone, on wood anatomical properties and density were ameliorated when in combination. Wood species had a much greater impact on the wood-decaying fungal community and initial wood decomposition rate than did growth or decomposition of wood in elevated CO2 and / or O3. Polyporales, Agaricales, and Russulales were the dominant orders of fungi isolated. Based on the current results, future higher levels of CO2 and O3 may have moderate effects on wood quality of northern hardwoods, but for utilization purposes these may not be considered significant. However, wood-decaying fungal community composition and decomposition of northern hardwoods may be altered via shifts in species and / or genotype composition under future higher levels of CO2 and O3.
Resumo:
This report provides an analysis of the thermal performance and emissions characteristics of improved biomass stoves constructed using earthen materials. Commonly referred to as mud stoves, this type of improved stove incorporates high clay content soil with an organic binder in the construction of its combustion chamber and body. When large quantities of the mud material are used to construct the stove body, the stove does not offer significant improvements in fuel economy or air quality relative to traditional open fire cooking. This is partly because a significant amount of heat is absorbed by the mass of the stove reducing combustion efficiency and heat transfer to the cook pot. An analysis of the thermal and mechanical properties of stove materials was also performed. A material mixture containing a one‐to‐one ratio by volume of high content clay soil and straw was found to have thermal properties comparable to fired ceramics used in more advanced improved stove designs. Feedback from mud stove users in Mauritania and Mali, West Africa was also collected during implementation. Suggestions for stove design improvements were developed based on this information and the data collected in the performance, emissions, and material properties analysis. Design suggestions include reducing stove height to accommodate user cooking preferences and limiting overall stove mass to reduce heat loss to the stove body.
Resumo:
Global climate change might significantly impact future ecosystems. The purpose of this thesis was to investigate potential changes in woody plant fine root respiration in response to a changing climate. In a sugar maple dominated northern hardwood forest, the soil was experimentally warmed (+4 °C) to determine if the tree roots could metabolically acclimate to warmer soil conditions. After one and a half years of soil warming, there was an indication of slight acclimation in the fine roots of sugar maple, helping the ecosystem avoid excessive C loss to the atmosphere. In a poor fen northern peatland in northern Michigan, the impacts of water level changes on woody plant fine root respiration were investigated. In areas of increased and also decreased water levels, there were increases in the CO2 efflux from ecosystem fine root respiration. These studies show the importance of investigating further the impacts climate change may have on C balance in northern ecosystems.