3 resultados para white dent
em Digital Commons - Michigan Tech
Resumo:
Tsuga canadensis (eastern hemlock) is a highly shade-tolerant, late-successional, and long-lived conifer species found throughout eastern North America. It is most often found in pure or nearly pure stands, because highly acidic and nutrient poor forest floor conditions are thought to favor T. canadensis regeneration while simultaneously limiting the establishment of some hardwood species with greater nutrient requirements. Once a common species, T. canadensis is currently experiencing widescale declines across its range. The hemlock woolly adelgid (Adelges tsugae) is decimating the population across its eastern distribution. Across the Upper Great Lakes region, where the adelgid is currently being held at bay by cold winter temperatures, T. canadensis has been experiencing failures in regeneration attributed, in part, to herbivory by white-tailed deer (Odocoileus virginianus). Deer utilize T. canadensis stands as winter habitat in areas of high snow depth. Tsuga canadensis, once a major component of these forests, currently exists at just a fraction of its pre-settlement abundance due to historic logging and contemporary forest management practices, and what remains is found in small remnant patches surrounded by second- and third-growth deciduous forests. The deer population across the region, however, is likely double that of pre-European settlement times. In this dissertation I explore the relationship between white-tailed deer use of T. canadensis as winter habitat and the effect this use is having on regeneration and forest succession. For this research I quantified stand composition and structure and abiotic variables of elevation and snow depth in 39 randomly selected T. canadensis stands from across the western Upper Peninsula of Michigan. I also quantified composition and the configuration of the landscapes surrounding these stands. I measured relative deer use of T. canadensis stands as pellet group piles deposited in each stand during each of three consecutive winters, 2005-06, 2006-07, and 2007-08. The results of this research suggest that deer use of T. canadensis stands as winter habitat is influenced primarily by snow depth, elevation, and the composition and configuration of the greater landscapes surrounding these stands. Specifically, stands with more heterogeneous landscapes surrounding them (i.e., a patchy mosaic of conifer, deciduous, and open cover) had higher relative deer use than stands surrounded by homogenous deciduous forest cover. Additionally, the intensity of use and the number of stands used was greater in years with higher average snow depth. Tsuga canadensis regeneration in these stands was negatively associated with deer use and Acer saccharum (sugar maple) basal area. Of the 39 stands, 17 and 22 stands had no T. canadensis regeneration in small and large sapling categories, respectively. Acer saccharum was the most common understory tree species, and the importance of A. saccharum in the understory (stems < 10 cm dbh) of the stands was positively associated with overstory A. saccharum dominance. Tsuga canadensis establishment was associated with high-decay coarse woody debris and moss, and deciduous leaf litter inputs in these stands may be limiting access to these important microsites. Furthermore, A. saccharum is more tolerant to the effects of deer herbivory than T. canadensis, giving A. saccharum a competitive advantage in stands being utilized as winter habitat by deer. My research suggests that limited microsite availability, in conjunction with deer herbivory, may be leading to an erosion in T. canadensis patch stability and an altered successional trajectory toward one of A. saccharum dominance, an alternately stable climax species.
Resumo:
The Modeling method of teaching has demonstrated well--‐documented success in the improvement of student learning. The teacher/researcher in this study was introduced to Modeling through the use of a technique called White Boarding. Without formal training, the researcher began using the White Boarding technique for a limited number of laboratory experiences with his high school physics classes. The question that arose and was investigated in this study is “What specific aspects of the White Boarding process support student understanding?” For the purposes of this study, the White Boarding process was broken down into three aspects – the Analysis of data through the use of Logger Pro software, the Preparation of White Boards, and the Presentations each group gave about their specific lab data. The lab used in this study, an Acceleration of Gravity Lab, was chosen because of the documented difficulties students experience in the graphing of motion. In the lab, students filmed a given motion, utilized Logger Pro software to analyze the motion, prepared a White Board that described the motion with position--‐time and velocity--‐time graphs, and then presented their findings to the rest of the class. The Presentation included a class discussion with minimal contribution from the teacher. The three different aspects of the White Boarding experience – Analysis, Preparation, and Presentation – were compared through the use of student learning logs, video analysis of the Presentations, and follow--‐up interviews with participants. The information and observations gathered were used to determine the level of understanding of each participant during each phase of the lab. The researcher then looked for improvement in the level of student understanding, the number of “aha” moments students had, and the students’ perceptions about which phase was most important to their learning. The results suggest that while all three phases of the White Boarding experience play a part in the learning process for students, the Presentations provided the most significant changes. The implications for instruction are discussed.
Resumo:
Our research explored the influence of deer and gap size on nitrogen cycling, soil compaction, and vegetation trajectories in twelve canopy gaps of varying sizes in a hemlock-northern hardwood forest. Each gap contained two fenced and two unfenced plots. Gap size, soil compaction, winter deer use, and available nitrogen were measured in 2011. Vegetation was assessed in 2007 and 2011, and non-metric multi-dimensional scaling was used to determine vegetative change. Results show that winter deer use was greater in smaller gaps. Deer accessibility did not influence compaction but did significantly increase total available nitrogen in April. April ammonium, April nitrate, and May nitrate were positively related to gap size. The relationship between gap size and vegetative community change was positive for fenced plots but unrelated for unfenced plots. In conclusion, deer are positively contributing to nitrogen dynamics and altering the relationship between canopy gap size and vegetative community change.