9 resultados para watershed management -- Mekong River Watershed
em Digital Commons - Michigan Tech
Resumo:
Multiple indices of biotic integrity and biological condition gradient models have been developed and validated to assess ecological integrity in the Laurentian Great Lakes Region. With multiple groups such as Tribal, Federal, and State agencies as well as scientists and local watershed management or river-focused volunteer groups collecting data for bioassessment it is important that we determine the comparability of data and the effectiveness of indices applied to these data for assessment of natural systems. We evaluated the applicability of macroinvertebrate and fish community indices for assessing site integrity. Site quality (i.e., habitat condition) could be classified differently depending on which index was applied. This highlights the need to better understand the metrics driving index variation as well as reference conditions for effective communication and use of indices of biotic integrity in the Upper Midwest. We found the macroinvertebrate benthic community index for the Northern Lakes and Forests Ecoregion and a coldwater fish index of biotic integrity for the Upper Midwest were most appropriate for use in the Big Manistee River watershed based on replicate sampling, ability to track trends over time and overall performance. We evaluated three sites where improper road stream crossings (culverts) were improved by replacing them with modern full-span structures using the most appropriate fish and macroinvertebrate IBIs. We used a before-after-control-impact paired series analytical design and found mixed results, with evidence of improvement in biotic integrity based on macroinvertebrate indices at some of the sites while most sites indicated no response in index score. Culvert replacements are often developed based on the potential, or the perception, that they will restore ecological integrity. As restoration practitioners, researchers and managers, we need to be transparent in our goals and objectives and monitor for those results specifically. The results of this research serve as an important model for the broader field of ecosystem restoration and support the argument that while biotic communities can respond to actions undertaken with the goal of overall restoration, practitioners should be realistic in their expectations and claims of predicted benefit, and then effectively evaluate the true impacts of the restoration activities.
Resumo:
Riparian ecology plays an important part in the filtration of sediments from upland agricultural lands. The focus of this work makes use of multispectral high spatial resolution remote sensing imagery (Quickbird by Digital Globe) and geographic information systems (GIS) to characterize significant riparian attributes in the USDA’s experimental watershed, Goodwin Creek, located in northern Mississippi. Significant riparian filter characteristics include the width of the strip, vegetation properties, soil properties, topography, and upland land use practices. The land use and vegetation classes are extracted from the remotely sensed image with a supervised maximum likelihood classification algorithm. Accuracy assessments resulted in an acceptable overall accuracy of 84 percent. In addition to sensing riparian vegetation characteristics, this work addresses the issue of concentrated flow bypassing a riparian filter. Results indicate that Quickbird multispectral remote sensing and GIS data are capable of determining riparian impact on filtering sediment. Quickbird imagery is a practical solution for land managers to monitor the effectiveness of riparian filtration in an agricultural watershed.
Resumo:
With proper application of Best Management Practices (BMPs), the impact from the sediment to the water bodies could be minimized. However, finding the optimal allocation of BMP can be difficult, since there are numerous possible options. Also, economics plays an important role in BMP affordability and, therefore, the number of BMPs able to be placed in a given budget year. In this study, two methodologies are presented to determine the optimal cost-effective BMP allocation, by coupling a watershed-level model, Soil and Water Assessment Tool (SWAT), with two different methods, targeting and a multi-objective genetic algorithm (Non-dominated Sorting Genetic Algorithm II, NSGA-II). For demonstration, these two methodologies were applied to an agriculture-dominant watershed located in Lower Michigan to find the optimal allocation of filter strips and grassed waterways. For targeting, three different criteria were investigated for sediment yield minimization, during the process of which it was found that the grassed waterways near the watershed outlet reduced the watershed outlet sediment yield the most under this study condition, and cost minimization was also included as a second objective during the cost-effective BMP allocation selection. NSGA-II was used to find the optimal BMP allocation for both sediment yield reduction and cost minimization. By comparing the results and computational time of both methodologies, targeting was determined to be a better method for finding optimal cost-effective BMP allocation under this study condition, since it provided more than 13 times the amount of solutions with better fitness for the objective functions while using less than one eighth of the SWAT computational time than the NSGA-II with 150 generations did.
Resumo:
Despite failed attempts at obtaining a potable water system, the village of El Caracol in Southern Honduras remains committed to improving access to water resources. To assist in this endeavor, an investigation of the hydrogeological characteristics of the local watershed was conducted. Daily precipitation was recorded to examine the relationship between precipitation and approximated river and spring discharges. A Thornthwaite Mather Water Balance Model was used to predict monthly discharges for comparison with observed values, and to infer the percentage of topographic watersheds contributing to the respective discharges. As aquifer porosity in this region is thought to be primarily secondary (i.e., fractures), field observed lineaments were compared with those interpreted from remote sensing imagery in an attempt to determine the usefulness of these interpretations in locating potential water sources for a future project.
Resumo:
Early water resources modeling efforts were aimed mostly at representing hydrologic processes, but the need for interdisciplinary studies has led to increasing complexity and integration of environmental, social, and economic functions. The gradual shift from merely employing engineering-based simulation models to applying more holistic frameworks is an indicator of promising changes in the traditional paradigm for the application of water resources models, supporting more sustainable management decisions. This dissertation contributes to application of a quantitative-qualitative framework for sustainable water resources management using system dynamics simulation, as well as environmental systems analysis techniques to provide insights for water quality management in the Great Lakes basin. The traditional linear thinking paradigm lacks the mental and organizational framework for sustainable development trajectories, and may lead to quick-fix solutions that fail to address key drivers of water resources problems. To facilitate holistic analysis of water resources systems, systems thinking seeks to understand interactions among the subsystems. System dynamics provides a suitable framework for operationalizing systems thinking and its application to water resources problems by offering useful qualitative tools such as causal loop diagrams (CLD), stock-and-flow diagrams (SFD), and system archetypes. The approach provides a high-level quantitative-qualitative modeling framework for "big-picture" understanding of water resources systems, stakeholder participation, policy analysis, and strategic decision making. While quantitative modeling using extensive computer simulations and optimization is still very important and needed for policy screening, qualitative system dynamics models can improve understanding of general trends and the root causes of problems, and thus promote sustainable water resources decision making. Within the system dynamics framework, a growth and underinvestment (G&U) system archetype governing Lake Allegan's eutrophication problem was hypothesized to explain the system's problematic behavior and identify policy leverage points for mitigation. A system dynamics simulation model was developed to characterize the lake's recovery from its hypereutrophic state and assess a number of proposed total maximum daily load (TMDL) reduction policies, including phosphorus load reductions from point sources (PS) and non-point sources (NPS). It was shown that, for a TMDL plan to be effective, it should be considered a component of a continuous sustainability process, which considers the functionality of dynamic feedback relationships between socio-economic growth, land use change, and environmental conditions. Furthermore, a high-level simulation-optimization framework was developed to guide watershed scale BMP implementation in the Kalamazoo watershed. Agricultural BMPs should be given priority in the watershed in order to facilitate cost-efficient attainment of the Lake Allegan's TP concentration target. However, without adequate support policies, agricultural BMP implementation may adversely affect the agricultural producers. Results from a case study of the Maumee River basin show that coordinated BMP implementation across upstream and downstream watersheds can significantly improve cost efficiency of TP load abatement.
Resumo:
The past decade has brought significant advancements in seasonal climate forecasting. However, water resources decision support and management continues to be based almost entirely on historical observations and does not take advantage of climate forecasts. This study builds on previous work that conditioned streamflow ensemble forecasts on observable climate indicators, such as the El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) for use in a decision support model for the Highland Lakes multi-reservoir system in central Texas operated by the Lower Colorado River Authority (LCRA). In the current study, seasonal soil moisture is explored as a climate indicator and predictor of annual streamflow for the LCRA region. The main purpose of this study is to evaluate the correlation of fractional soil moisture with streamflow using the 1950-2000 Variable Infiltration Capacity (VIC) Retrospective Land Surface Data Set over the LCRA region. Correlations were determined by examining different annual and seasonal combinations of VIC modeled fractional soil moisture and observed streamflow. The applicability of the VIC Retrospective Land Surface Data Set as a data source for this study is tested along with establishing and analyzing patterns of climatology for the watershed study area using the selected data source (VIC model) and historical data. Correlation results showed potential for the use of soil moisture as a predictor of streamflow over the LCRA region. This was evident by the good correlations found between seasonal soil moisture and seasonal streamflow during coincident seasons as well as between seasonal and annual soil moisture with annual streamflow during coincident years. With the findings of good correlation between seasonal soil moisture from the VIC Retrospective Land Surface Data Set with observed annual streamflow presented in this study, future research would evaluate the application of NOAA Climate Prediction Center (CPC) forecasts of soil moisture in predicting annual streamflow for use in the decision support model for the LCRA.
Resumo:
The effects of climate change are expected to be very severe in arid regions. The Sonora River Basin, in the northwestern state of Sonora, Mexico, is likely to be severely affected. Some of the anticipated effects include precipitation variability, intense storm events, higher overall temperatures, and less available water. In addition, population in Sonora, specifically the capital city of Hermosillo, is increasing at a 1.5% rate and current populations are near 700,000. With the reduction in water availability and an increase in population, Sonora, Mexico is expected to experience severe water resource issues in the near future. In anticipation of these changes, research is being conducted in an attempt to improve water management in the Sonora River Basin, located in the northwestern part of Sonora. This research involves participatory modeling techniques designed to increase water manager awareness of hydrological models and their use as integrative tools for water resource management. This study was conducted as preliminary research for the participatory modeling grant in order to gather useful information on the population being studied. This thesis presents research from thirty-four in-depth interviews with water managers, citizens, and agricultural producers in Sonora, Mexico. Data was collected on perceptions of water quantity and quality in the basin, thoughts on current water management practices, perceptions of climate change and its management, experience with, knowledge of, and trust in hydrological models as water management tools. Results showed that the majority of interviewees thought there was not enough water to satisfy their daily needs. Most respondents also agreed that the water available was of good quality, but that current management of water resources was ineffective. Nearly all interviewees were aware of climate change and thought it to be anthropogenic. May reported experiencing higher temperatures, precipitation changes, and higher water scarcity and attributed those fluctuations to climate change. 65% of interviewees were at least somewhat familiar with hydrological models, though only 28% had ever used them or their output. Even with model usage results being low, 100% of respondents believed hydrological models to be very useful water management tools. Understanding how water, climate change, and hydrological models are perceived by this population of people is essential to improving their water management practices in the face of climate change.
Resumo:
Streams and riparian areas can be intricately connected via physical and biotic interactions that influence habitat conditions and supply resource subsidies between these ecosystems. Streambed characteristics such as the size of substrate particles influence the composition and the abundance of emergent aquatic insects, which can be an important resource for riparian breeding birds. We predict fine sediment abundance in small headwater streams directly affects the composition and number of emergent insects while it may indirectly affect riparian bird assemblages. Streams with abundant fine sediments that embed larger substrates should have lower emergence of large insects such as phemeroptera, Plecoptera and Trichoptera. Streams with lower emergent insect abundance are predicted to support fewer breeding birds and may lack certain bird species that specialize on aquatic insects. This study examined relationships between streambed characteristics, and emergent insects (composition, abundance and biomass), and riparian breeding birds (abundance and richness) along headwater streams of the Otter River Watershed. The stream bed habitats of seven stream reaches were characterized using longitudinal surveys. Malaise traps were deployed to sample emergent aquatic insects. Riparian breeding birds were surveyed using fixed-radius point-counts. Streams differed within a wide range of fine sediment abundances. Total emergent aquatic insect abundance increased as coverage by instream substrates increased in diameter, while bird community was unresponsive to insect or stream features. Knowledge of stream and riparian relationships is important for understanding of food webs in these ecosystems, and it is useful for riparian forest conservation and improving land-use management to reduce sediment pollution in these systems.
Resumo:
The Big Manistee River was one of the most well known Michigan rivers to historically support a population of Arctic grayling (Thymallus arctics). Overfishing, competition with introduced fish, and habitat loss due to logging are believed to have caused their decline and ultimate extirpation from the Big Manistee River around 1900 and from the State of Michigan by 1936. Grayling are a species of great cultural importance to Little River Band of Ottawa Indian tribal heritage and although past attempts to reintroduce Arctic grayling have been unsuccessful, a continued interest in their return led to the assessment of environmental conditions of tributaries within a 21 kilometer section of the Big Manistee River to determine if suitable habitat exists. Although data describing historical conditions in the Big Manistee River is limited, we reviewed the literature to determine abiotic conditions prior to Arctic grayling disappearance and the habitat conditions in rivers in western and northwestern North America where they currently exist. We assessed abiotic habitat metrics from 23 sites distributed across 8 tributaries within the Manistee River watershed. Data collected included basic water parameters, streambed substrate composition, channel profile and areal measurements of channel geomorphic unit, and stream velocity and discharge measurements. These environmental condition values were compared to literature values, habitat suitability thresholds, and current conditions of rivers with Arctic grayling populations to assess the feasibility of the abiotic habitat in Big Manistee River tributaries to support Arctic grayling. Although the historic grayling habitat in the region was disturbed during the era of major logging around the turn of the 20th century, our results indicate that some important abiotic conditions within Big Manistee River tributaries are within the range of conditions that support current and past populations of Arctic grayling. Seven tributaries contained between 20-30% pools by area, used by grayling for refuge. All but two tributaries were composed primarily of pebbles, with the remaining two dominated by fine substrates (sand, silt, clay). Basic water parameters and channel depth were within the ranges of those found for populations of Arctic grayling persisting in Montana, Alaska, and Canada for all tributaries. Based on the metrics analyzed in this study, suitable abiotic grayling habitat does exist in Big Manistee River tributaries.